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• Background and Aims Plant survival under extreme drought events has been associated with xylem vulner-
ability to embolism (the disruption of water transport due to air bubbles in conduits). Despite the ecological and 
economic importance of herbaceous species, studies focusing on hydraulic failure in herbs remain scarce. Here, 
we assess the vulnerability to embolism and anatomical adaptations in stems of seven herbaceous Brassicaceae 
species occurring in different vegetation zones of the island of Tenerife, Canary Islands, and merged them with a 
similar hydraulic–anatomical data set for herbaceous Asteraceae from Tenerife.
• Methods Measurements of vulnerability to xylem embolism using the in situ flow centrifuge technique along 
with light and transmission electron microscope observations were performed in stems of the herbaceous spe-
cies. We also assessed the link between embolism resistance vs. mean annual precipitation and anatomical stem 
characters.
• Key Results The herbaceous species show a 2-fold variation in stem P50 from –2.1 MPa to –4.9 MPa. Within 
Hirschfeldia incana and Sisymbrium orientale, there is also a significant stem P50 difference between populations 
growing in contrasting environments. Variation in stem P50 is mainly explained by mean annual precipitation as 
well as by the variation in the degree of woodiness (calculated as the proportion of lignified area per total stem 
area) and to a lesser extent by the thickness of intervessel pit membranes. Moreover, mean annual precipitation 
explains the total variance in embolism resistance and stem anatomical traits.
• Conclusions The degree of woodiness and thickness of intervessel pit membranes are good predictors of em-
bolism resistance in the herbaceous Brassicaceae and Asteraceae species studied. Differences in mean annual 
precipitation across the sampling sites affect embolism resistance and stem anatomical characters, both being 
important characters determining survival and distribution of the herbaceous eudicots.

Key words: Canary Islands, drought, embolism resistance, herbaceous species, stem anatomy, thickness of 
intervessel pit membranes, woodiness, xylem hydraulics.

INTRODUCTION

Hydraulic failure is one of the main physiological mechan-
isms associated with reductions in forest productivity and 
drought-induced tree mortality (Choat et al., 2012; Anderegg 
et al., 2016; Adams et al., 2017). Water movement inside the 
conduits is prone to dysfunction due to negative xylem pres-
sures generating metastable conditions (Tyree and Sperry, 
1989; Tyree and Zimmermann, 2002). With increasing drought 
stress, embolisms could propagate from a gas-filled conduit to a 
neighbouring functional conduit through interconduit pit mem-
branes, potentially generating lethal levels of embolisms (Tyree 
and Zimmermann, 2002; Brodribb et  al., 2010; Brodersen 
et  al., 2013). The vulnerability to xylem embolism can be 
measured by vulnerability curves, in which the percentage loss 
of hydraulic conductivity is plotted against the xylem pres-
sure (Cochard et al., 2010, 2013). The P50 value, referring to 
the negative pressure associated with 50 % loss of hydraulic 
conductivity, is an oft-cited proxy for plant drought resistance, 

although it does not present a critical threshold value for angio-
sperms (Urli et al., 2013; Adams et al., 2017).

There is considerable interspecific variation in P50 across 
plant species, from –0.5 MPa up to –19 MPa, and the majority 
of studies show that species from dry environments are gener-
ally more resistant to embolism (more negative P50) than spe-
cies from wet environments (Choat et  al., 2012; Lens et  al., 
2013, 2016; Larter et al., 2015). Knowledge about intraspecific 
variation in P50 remains scarce and provides contradictory re-
sults: it seems to be species specific, but it can vary either con-
siderably (Kolb and Sperry, 1999; Choat et al., 2007; Corcuera 
et  al., 2011; Nolf et  al., 2014, 2016; Volaire et  al., 2018; 
Cardoso et al., 2018) or subtly (Holste et al., 2006; Martínez-
Vilalta et al., 2009; Lamy et al., 2013; Ahmad et al., 2017), or 
may even be absent (Maherali et al., 2009; Wortemann et al., 
2011) for woody as well as for herbaceous species.

There is a vast body of literature available focusing on hy-
draulic conductivity and safety for hundreds of woody species 
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(Maherali et  al., 2004; Pittermann et  al., 2010; Choat et  al., 
2012; Bouche et  al., 2014; Gleason et  al., 2016). Herbs, on 
the other hand, remain poorly investigated: P50 values of stems 
are available for <30 species, of which a minority are eudicots 
while most species are grasses (e.g. Mencuccini and Comstock, 
1999; Stiller and Sperry, 2002; Kocacinar and Sage, 2003; 
Holste et  al., 2006; Maherali et  al., 2009; Rosenthal et  al., 
2010; Lens et al., 2013, 2016; Nolf et al., 2014, 2016; Skelton 
et al., 2017; Dória et al., 2018; Volaire et al., 2018). Based on 
this limited data set, most herbaceous species studied so far are 
sensitive to embolism formation in their stems, with a P50 of 
around –2.5 MPa. However, some of the grass stems studied are 
remarkably resistant to embolism formation (up to –7.5 MPa), 
implying that both herbs and trees share the ability to support 
very negative water potentials without embolism formation 
during drought stress (Lens et al., 2016).

In this study, we focus on the research field of xylem hy-
draulics in herbaceous stems which has been largely neglected, 
despite the overwhelming occurrence of economically im-
portant herbaceous food crops (Monfreda et al., 2008) and the 
dependency on grazed grasslands for our livestock. The main 
reason for neglecting herb hydraulics is that their fragile stems 
and often low hydraulic conductance make vulnerability curves 
technically more challenging. However, recent fine-tuning of 
the high-throughput in situ flow centrifuge method (cavitron; 
Lens et al., 2016; Dória et al., 2018) and the new optical vul-
nerability technique (Skelton et al., 2017) have yielded stem P50 
data of herbaceous species, which opens up new opportunities 
to boost the virtually neglected aspect of herb hydraulics and 
predict future crop productivity and survival (Challinor et al., 
2009), especially in a world facing climate change (Rahmstorf 
and Coumou, 2012; Dai, 2013).

In addition to the understudied aspect of herb hydraulics, 
we also investigate stem anatomical characters to assess poorly 
known structure–function relationships in herbaceous stems. 
Plant sensitivity to drought-induced embolism is determined by a 
whole suite of stem anatomical characters in woody trees (Hacke 
and Jansen, 2009; Lens et  al., 2011; Jacobsen et  al., 2012; 
Pivovaroff et al., 2016; Pereira et al., 2017; O’Brien et al., 2017), 
of which the thickness of intervessel pit membranes is probably 
one of the most hydraulically relevant anatomical features, al-
tering both water flow efficiency and the spread of potential le-
thal levels of embolism in the xylem (Jansen et al., 2009; Lens 
et al., 2011; Li et al., 2016; Gleason et al., 2016; Dória et al., 
2018). Furthermore, vessel diameter is an informative char-
acter determining xylem area-specific conductivity (Ks) (Hacke 
et al., 2016), but also correlates with plant height, environmental 
constraints and, potentially, embolism resistance (Davis et  al., 
1999; Olson and Rosell, 2013; Schreiber et  al., 2015; Hacke 
et  al., 2016; Olson et  al., 2018). Mechanical characters such 
as wood density, total degree of lignification, thickness-to-span 
ratio of vessels and thickness of the intervessel wall have also 
been linked to increasing drought stress resistance (Hacke et al., 
2001; Jacobsen et al., 2005, 2007; Chave et al., 2009; Hoffman 
et al., 2011; Pratt and Jacobsen, 2017). These mechanical char-
acters are often reported as indirectly linked to embolism resist-
ance, since embolism formation and spread occur at the pit level 
(Bouche et al., 2014; Pereira et al., 2017; Dória et al., 2018).

In herbaceous eudicots, an increase in embolism resistance 
is linked to an increase in wood formation, which reflects an 

increase in the proportion of lignified area per total stem area 
(Lens et al., 2013, 2016; Tixier et al., 2013; Dória et al., 2018), 
and also grasses that are more resistant to embolism formation 
have more lignified stems compared with the more vulnerable 
species (Lens et al., 2016). Wood formation has been observed 
in many herbaceous eudicots, especially at the base of the stem, 
and several studies show a continuous range in the degree of 
wood formation between stems of herbaceous eudicot species 
(Dulin and Kirchoff, 2010; Schweingruber et al., 2011; Lens 
et  al., 2012a; Kidner et  al., 2016; Dória et  al., 2018). This 
highlights the fuzzy boundaries between woodiness and her-
baceousness, leading to intermediate life forms such as ‘woody 
herbs’ or ‘half shrubs’ (Lens et al., 2012a), but species with 
these intermediate life forms do not form a wood cylinder that 
extends towards the upper parts of the stem and are therefore 
considered as herbaceous (Kidner et al., 2016).

In this study, we combine hydraulic measurements with de-
tailed stem anatomical characteristics and climatic variables 
(from meteorological stations near the sampling sites) to in-
vestigate structure–function relationships in stems of seven 
herbaceous species belonging to the Brassicaceae family from 
the island of Tenerife (Canary Islands, Spain), and merged this 
data set with a similar data set for four herbaceous Asteraceae 
species that were sampled on the same island for a previous 
publication (Dória et al., 2018). The main reason for selecting 
Tenerife is the huge range of climatic conditions in a small area 
of 2034 km2, ranging from the humid northern laurel forests of 
Anaga to the dry southern desert-like region around El Médano, 
separated by the tall Teide volcano (approx. 3700 m asl) gen-
erating different altitudinal vegetation types (del-Arco et  al., 
2006). We address the following questions. (1) Do herbaceous 
species growing in drier environments have more embolism-
resistant stems, both across and within species? (2) What are 
the stem anatomical characters that explain the variation in em-
bolism resistance amongst the species studied? (3) Is there any 
relationship between precipitation and both xylem vulnerability 
to embolism and anatomical characters?

MATERIALS AND METHODS

Plant material and climate data

We collected the Brassicaceae specimens throughout the island 
of Tenerife, in different vegetation zones with different mean 
annual precipitation and aridity indices. The climatic data of 
precipitation and temperature for each of the sampling sites 
were provided by Agencia Estatal de Meteorología (AEMET, 
Spanish Government), covering a period from 110 to 30 years 
depending on the meteorological station. We received the data 
from five different meteorological stations (Anaga San Andrés, 
Arico Bueno, Arafo, Laguna Instituto and Vilaflor) matching 
the five sampling sites (Supplementary Data Fig. S1). We used 
the mean annual precipitation for each site, and calculated the 
potential evapotranspiration using the Thornthwaite equation 
(1948). The aridity indices were calculated as a ratio of mean 
annual precipitation to mean annual potential evapotranspir-
ation (UNEP, 1997). Since this aridity index is highly correl-
ated with mean annual precipitation (P < 0.001, r = 0.993) we 
opted to select the former in the statistical models.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/advance-article-abstract/doi/10.1093/aob/m

cy233/5259326 by guest on 30 D
ecem

ber 2018

http://academic.oup.com/aob/article-lookup/doi/10.1093/aob/mcy233#supplementary-data


Dória et al. — Embolism resistance in herbaceous eudicot stems 3

The collection trip was carried out in March 2017, matching 
with the wet, flowering period of the herbaceous species. We har-
vested seven annual Brassicaceae species: Hirschfeldia incana 
(L.) Lagr.-Fossat, Raphanus raphanistrum L., Rapistrum rugo-
sum L. All., Sinapis alba L., Sinapis arvensis L., Sisymbrium 
erysimoides Desf. and Sisymbrium orientale L. The time of ger-
mination is similar for all species studied and it is linked to the 
arrival of the rains in autumn and winter. However, there can 
be small differences between populations, amongst and within 
species: populations growing on the northern slopes of the is-
land generally germinate earlier than plants growing on the 
southern slopes due to the moist north-eastern trade winds, and 
populations from higher altitudes usually germinate later than 
plants from lower altitudes.

The specimens of H. incana and S. orientale were collected 
from two different populations occurring in contrasting envir-
onments. The northern area of La Laguna (mean annual pre-
cipitation = 526.9 mm; aridity index = 0.68) and the southern 
area of Vilaflor (mean annual precipitation = 396.3 mm; aridity 
index  =  0.53) were the wetter collection sites for H.  incana 
and S.  orientale populations, respectively. The drier sites 
were the southern areas of Guímar (mean annual precipi-
tation  =  311.8  mm; aridity index  =  0.39) and the region of 
Arico Bueno (mean annual precipitation = 264.3 mm; aridity 
index  =  0.34), for H.  incana and S.  orientale, respectively 
(Supplementary Data Fig. S1).

The four annual species of Asteraceae, Cladanthus mix-
tus (L.) Oberpr. & Vogt., Coleostephus myconis (L.) Cass., 
Glebionis coronaria (L.) Cass ex Spach and Glebionis sege-
tum (L.) Fourr. included in this study were investigated by 
Dória et al. (2018), during the spring of 2016 in Tenerife in the 
area of La Laguna (mean annual precipitation = 526.9 mm; 
aridity index  =  0.68), following the same methodological 
procedures described below. For both the Brassicaceae and 
Asteraceae species, we harvested 10–20 individuals per spe-
cies. All the species studied are annual herbaceous species, 
but some species (especially S. alba and S. arvensis) show a 
tendency to become biannual, which may be a consequence of 
the release of seasonality compared with the European main-
land (Carlquist, 1974).

All individuals were collected from the soil, with roots still 
attached, quickly wrapped in wet tissues and sealed in plastic 
bags. Afterwards, the stems were stored in a cold room (around 
5  ºC) for a maximum of 5 d at the University of La Laguna, 
Tenerife. The sealed plastic bags were shipped by plane and 
immediately stored in a fridge for a maximum of 2 weeks at 
the caviplace facility to perform the hydraulic measurements 
(University of Bordeaux, France).

Xylem vulnerability to embolism

One to three stems per individual from at least ten individ-
uals per species were used to measure vulnerability to em-
bolism. Prior to measurements, all the stems were cut under 
water in the lab with a razor blade into a standard length of 
27 or 42 cm in order to fit the two cavitron rotors used, and 
we confirmed that the vessels were shorter than the stem seg-
ments using the air pressure technique at 0.2 MPa. The cavit-
ron is a modified centrifuge allowing the negative pressure in 

the central part of the stem segment to be lowered by spinning 
the stems at different speeds while simultaneously measur-
ing the water transport in the vascular system (Cochard, 2002; 
Cochard et al., 2013). First, the maximum hydraulic conduct-
ance of the stem in its native state (Kmax in m2 MPa–1 s–1) was 
calculated under xylem pressure close to zero MPa using a 
reference ionic solution of 10 mm KCl and 1 mm CaCl2 in 
deionized ultrapure water. The rotation speed of the centri-
fuge was then gradually increased by –0.5 or –1 MPa to lower 
xylem pressure. The percentage loss of conductivity (PLC) of 
the stem was determined at each pressure step following the 
equation:

PLC = 100
Å

1 − K
Kmax

ã
 (1)

where Kmax represents the maximum conductance of the 
stem and K represents the conductance associated at each 
pressure step.

The vulnerability curves, showing the change in per-
centage loss of conductivity according to the xylem pressure, 
were obtained using the Cavisoft software (Cavisoft v1.5, 
University of Bordeaux, Bordeaux, France). A  sigmoid func-
tion (Pammenter and Van der Willigen, 1998) was fitted to the 
data from each sample, using the following equation with SAS 
9.4 (SAS 9.4, SAS Institute, Cary, NC, USA):

PLC =
100[

1 + exp
( S

25 ∗ (Pi − P50)
)] (2)

where S (% MPa–1) is the slope of the vulnerability curve at the 
inflexion point, P is the xylem pressure value used at each step, 
and P50 is the xylem pressure inducing 50 % loss of hydraulic 
conductivity. The parameters S and P50 were averaged for each 
species.

Stem anatomy

Light microscopy (LM), scanning electron microscopy 
(SEM) and transmission electron microscopy (TEM) were per-
formed at Naturalis Biodiversity Center, the Netherlands, based 
on the samples for which we had obtained suitable vulnerability 
curves. The samples were taken from three individuals per spe-
cies for LM and SEM, and from two individuals per species 
for TEM, from the middle part of the stem, where the negative 
pressure caused embolism formation during the cavitron experi-
ment. The lab protocols for LM, SEM and TEM followed Dória 
et al. (2018). All the anatomical measurements were done using 
ImageJ (National Institutes of Health, Bethesda, MD, USA), 
largely following the suggestions of Scholz et al. (2013) and the 
IAWA Committee (1989).

Amongst the anatomical characters measured using LM, 
several indicators for lignification were calculated using a 
cross-section, such as the proportion of lignified area per total 
stem area [PLIG, measuring the sum of primary xylem area, sec-
ondary xylem (= wood) area and fibre caps area in the cortex 
and dividing it by the total stem area], the proportion of xylem 
fibre wall area per fibre area (PFWFX, at the level of a single cell), 
and the thickness-to-span ratio of vessels (TWDV). The diameter 
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of vessels (DV) was calculated based on the lumen area that was 
considered to be a circle according to the equation:

DV =

…
4A
π

 (3)

where DV is the vessel diameter and A is the vessel lumen area. 
The hydraulically weighted vessel diameter (DH) was calcu-
lated following the equation:

DH =

∑
DV

5
∑

DV
4

 (4)

where DV is the vessel diameter as measured in eqn (3).
The ultrastructure of intervessel pits was observed using a 

field emission scanning electron microscope (Jeol JSM-7600F, 
Tokyo, Japan) and a JEOL JEM 1400-Plus transmission elec-
tron microscope (JEOL, Tokyo, Japan), as described in Dória 
et  al. (2018). Since we observed intervessel pit membranes 
from the central stem segment parts where centrifugal force 
was applied, our measurements provide a relative estimation of 
intervessel pit membrane thickness.

Statistical analyses

We tested the effect of both species and mean annual pre-
cipitation on the various hydraulic parameters (P12, P50, P88 
and slope) using an analysis of covariance (ANCOVA). A log 
transformation, when necessary, was applied to the predictive 
variables to deal with heteroscedasticity and/or non-normality 
(Zuur et al., 2007). A post-hoc Tukey’s HSD test, from the R 
package Agricolae (Mendiburu, 2017), was used to test whether 
hydraulic parameters differ amongst species. To test the differ-
ence in P50 between the two Brassicaceae populations growing 
in contrasting environments (H.  incana and S. orientale), we 
used linear mixed effects model, with the factor species as 
random effect, from the nlme R package (Pinheiro et al., 2018).

We applied simple linear regressions to test for the rela-
tionship between P50, climate data and anatomical variables. 
A  log transformation, when necessary, was performed on the 
predictive variables to deal with heteroscedasticity and/or non-
normality (Zuur et al., 2007).

In order to evaluate which anatomical variables explain em-
bolism resistance, we performed a multiple linear regression with 
P50 as response variable and stem anatomical characters as pre-
dictive variables. We selected a priori the predictive variables 
using biological knowledge based on previously published studies 
in combination with a pairwise scatterplot to detect the presence of 
correlations and collinearities. Then, we conducted a variance infla-
tion factor (VIF) analysis, keeping only variables with a VIF value 
<2 (Zuur et al., 2010). Subsequently, we followed the model sim-
plification removing each time the least significant variable, until 
all the remaining terms in the model were significant (Crawley, 
2007). The regression or differences were considered significant if 
P < 0.05. Next, we calculated the hierarchical partitioning (Chevan 
and Sutherland, 1991) for the variables retained in the model in 
order to assess their relative importance to explain P50.

Independent t-tests were used to compare stem anatomical 
differences between the two populations of Brassicaceae spe-
cies collected in contrasting environments.

To test whether differences in mean annual precipitation for 
each sampling site (PR) explained the combined variation of P50 
and the anatomical characters, including also these characters 
that were not retained in the multiple regression analysis (the 
proportion of xylem fibre wall area per fibre area as observed 
in a cross-section, the thickness-to-span ratio of vessels and the 
hydraulically weighted vessel diameter), we performed a per-
mutational multivariate analysis of variance (PERMANOVA). 
The anatomical characters and P50 are the response variables 
(rank transformed) and the mean annual precipitation is the pre-
dictive variable. PERMANOVA was performed using the adonis 
function in the Vegan R package (Oksanen et al., 2015), based 
on Euclidean distances and 999 permutations. Later, a principal 
component analysis (PCA) was conducted using the function rda 
in the package Vegan, to observe simultaneously the relation-
ships amongst the species, the main stem anatomical variables, 
the physiological variable (P50) and the mean annual precipitation 
(PR). We tested the relationship between some of the stem anatom-
ical variables used in PCA with Pearson’s coefficient correlation.

All analyses were performed using R version 3.4.3 (R Core 
Team, 2017) in R Studio version 1.1.414 (R Studio Team, 2016). 
All the differences were considered significant when P was <0.05.

RESULTS

Interspecific and intraspecific vulnerability to xylem embolism in 
the herbaceous stems

The 11 herbaceous species studied show stem P50 values vary-
ing 2-fold from –2.1  MPa to –4.9  MPa (Figs  1 and 2A; see 
Dória et  al., 2018 for the vulnerability curves of Asteraceae 
species) (Supplementary Data Table S1). The range of stem P50 
shows significant interspecific variation (F = 27.161, P < 0.001; 
Fig. 2A), with no interaction between species and mean annual 
precipitation (F  =  2.948, P  =  0.0901) (Supplementary Data 
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Fig.  1. Mean vulnerability curves for each of the seven herbaceous 
Brassicaceae species studied native to different vegetation zones of Tenerife 
(Canary Islands), with reference to the sampling localities for Hirschfeldia 
incana and Sisymbrium orientale. Shaded bands represent P50 standard errors, 
and 50 % percentage loss of conductivity (PLC) is indicated by the horizontal 
dotted line. L.L.  refers to the more humid population of H.  incana collected 
in the city of La Laguna. The numbers 1 and 2 of Sisymbrium orientale refer 
to the populations collected in drier and more humid sites, respectively. See 

Supplementary Data Fig S1.
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Table  S3). Species explain 70 % of the variance, regardless 
of the variation in mean annual precipitation for the sampling 
sites, while the mean annual precipitation (PR) explains 30 % of 
the variance, regardless of the variation in species (F = 16.689, 
P < 0.001; Fig. 2B) (Supplementary Data Table S3). Likewise, 
significant interspecific variations are also observed for P88 
and P12 (F = 22.507, P < 0.001; F = 7.868, P < 0.001, respect-
ively) with part of both variations explained by PR (F = 6.506, 
P < 0.05; F = 4.439, P < 0.05 for P88 and P12, respectively). 
Variation in slope amongst the species studied is also signifi-
cant (F = 4.940, P < 0.001), but the mean precipitation is not 
significant for this parameter (F = 0.138, P = 0.712).

The two Brassicaceae populations of H. incana and S. orien-
tale show significant intraspecific variation in P50 (P < 0.001, 
F  =  17.6083), demonstrating that the contrasting environ-
ments are important to explain the intraspecific variation in 
P50 (Fig. 3). For H. incana, the drier site receives on average 
311.8 mm of mean annual precipitation (aridity index = 0.39), 
while the more humid site receives on average 526.9  mm 
(aridity index  =  0.68). For S.  orientale, the drier site has on 
average 264.3 mm of mean annual precipitation, and the more 
humid site 396.3 mm for the same period (aridity index = 0.34 
and 0.53, respectively) (Supplementary Data Fig. S1).

Structure–function relationships in the herbaceous stems show 
correlation between embolism resistance and anatomy

The stem anatomical variables that best explain the variation 
in P50 are the proportion of lignified area per total stem area (PLIG; 

which is a measure of stem woodiness) (Fig. 4) and the thick-
ness of the intervessel pit membrane (TPM) (Fig. 5) (P < 0.001; 
R2 = 0.6783) (Supplementary Data Tables S2 and S4). The P50–
PLIG relationship remains significant for the separate data sets 
(P < 0.001; R2 = 0.58 for Brassicaceae and P < 0.01; R2 = 0.48 
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Fig. 2. Range of stem P50 amongst seven herbaceous Brassicaceae and four Asteraceae (represented with an asterisk; data from Dória et al., 2018) species from different 
vegetation zones in Tenerife (Canary Islands, Spain), and its relationship to mean annual precipitation. (A) Mean values of stem P50 of the herbaceous Brassicaceae and 
Asteraceae species studied. Standard errors are represented by bars. Different letters indicate differences between species at P < 0.05. (B) Relationship between P50 and 

mean annual precipitation at the individual level (on average six individuals per species). The adjusted R2 and level of significance is given.
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Fig.  3. Intraspecific differences of mean stem P50 between the two popu-
lations of the Brassicaceae, Hirschfeldia incana and Sisymbrium orientale, 
collected in contrasting environments (H.  incana: mean annual precipita-
tion  =  311.8  mm; aridity index  =  0.39 for the drier site, and mean annual 
precipitation = 526.9 mm; aridity index = 0.68 for the more humid site. S. ori-
entale: mean precipitation = 264.3 mm; aridity index = 0.34 for the drier site, 
and mean annual precipitation = 396.3 mm; aridity index = 0.53 for the more 

humid site.)
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Dória et al. — Embolism resistance in herbaceous eudicot stems6

for Asteraceae), while the P50–TPM correlation disappears when 
analysing the Brassicaceae and Asteraceae data sets separately 
(P = 0.2164, R2 = 0.040 vs. P = 0.6175, R2 = –0.099, respect-
ively). In addition, PLIG is the main variable explaining 69 % 
of the P50 variation, while TPM explains the remaining 31 % 
(Supplementary Data Tables S4).

The S.  orientale population growing in the drier sampling 
site shows a higher proportion of lignified area per total stem 
area (PLIG), thicker intervessel pit membranes (TPM) and thicker 
intervessel walls (TVW) than the population growing in the more 
humid sampling site (Fig.  6; Table  1) (Supplementary Data 
Table  S2). No significant anatomical differences were found 
between the two populations of H.  incana growing in con-
trasting environments.

All Brassicaceae observed have vestured pits (Fig. 5B–D 
and 6C, D), while these are absent in the Asteraceae spe-
cies. No differences in the level of vesturing are observed 
amongst the embolism-resistant vs. vulnerable Brassicaceae 
species.

Relationship between mean precipitation (PR), stem  
anatomy and P50

The PERMANOVA test shows that the mean annual precipi-
tation explains the variation in both stem anatomical characters 
and P50 (F = 3.8098, R2 = 0.14, P < 0.05) (Supplementary Data 
Table S5).

When analysing the association amongst stem anatomical 
characters, mean annual precipitation and P50 using a PCA, 
the first axis of the PCA explains 40 % of the total variance 
observed, while the second axis explains 21 %. The first prin-
cipal component has large positive associations with P50 and 
with mean annual precipitation (PR), and negative associations 
with the proportion of lignified area per total stem area as ob-
served in a cross-section (PLIG), the proportion of xylem fibre 
wall area per fibre area as observed in a cross-section (PFWFX) 
and the thickness of intervessel pit membranes (TPM) (Fig. 7). 
Along this first axis, the proportion of xylem fibre wall per 
fibre is correlated with P50 (P < 0.01, r = –0.45). The second 
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Fig. 4. Relationships between stem P50 and the proportion of lignified area per total stem area (PLIG). (A) Linear regression between P50 and PLIG. The adjusted 
R2 and the level of significance are given. Each dot represents one individual (on average three individuals per species). (B–E) Light microscope images of cross-
sections through the stem of Brassicaceae species showing an increase of PLIG matching with an increase in embolism resistance. (B) Raphanus raphanistrum. (C) 

Sinapis alba. (D) Rapistrum rugosum. (E) Sisymbrium orientale from the drier sampling site. The scale bars represent 500 μm.
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principal component has a large positive association with the 
hydraulically weighted vessel diameter (DH) and a negative as-
sociation with the thickness-to-span ratio of vessels (TWDV). 
These two variables are negatively correlated with each other 
(P  <  0.01, r  =  –0.51), but neither of them is correlated with 
embolism resistance (P  =  0.7608, r  =  –0.0525; P  =  0.5662, 
r = –0.0988). The thickness of the vessel is also not correlated 
with TWDV (P = 0.2811, r = 0.1846). The individuals distributed 
at the right side of the multivariate PCA space are associated 
with less negative values of P50 and higher mean annual pre-
cipitation. Some of these individuals present higher values of 
the thickness-to-span ratio of vessels, while others have higher 
hydraulically weighted vessel diameters. In contrast, the indi-
viduals at the left side of the multivariate PCA space are as-
sociated with more negative values of P50, more pronounced 
lignification characters, thicker intervessel pit membranes and 
lower mean annual precipitation (Fig. 7).

Individuals of the two Brassicaceae populations of H. incana 
(represented by circles) and S.  orientale (represented by tri-
angles) occupy different areas of the multivariate space 
(Fig. 7). The individuals collected in drier sites (open circles 
for H.  incana and open triangles for S. orientale) are associ-
ated with a higher degree of lignification characters, thicker 
intervessel pit membranes and lower values of mean annual 

precipitation (Fig. 7). The individuals collected in more humid 
sites (filled circles for H. incana and filled triangles for S. ori-
entale) are associated with higher hydraulically weighted 
vessel diameter and higher values of the thickness-to-span ratio 
of vessels (Fig.7).

DISCUSSION

Interspecific and intraspecific stem P50 variation across 
herbaceous eudicots is strongly linked to precipitation

Our data set, comprising 11 herbaceous species of 
Brassicaceae and Asteraceae from five different habitats in 
Tenerife with a mean annual precipitation from 252 to 527 mm, 
shows a 2-fold range of stem P50 values that match the precipi-
tation values of the sampling sites: the most vulnerable species 
(P50 –2.1  MPa) was collected from wetter environments and 
the most resistant species (P50 –4.9  MPa) was sampled from 
drier vegetation types (Figs 1 and 2). The explanatory power of 
mean annual precipitation towards stem P50 supports the func-
tional relevance of resistance to xylem embolism as an adaptive 
response to water deficit, as has been repeatedly demonstrated 
for woody trees (Maherali et al., 2004; Blackman et al., 2012; 
Choat et  al., 2012) and to a lesser extent also herbs (mainly 
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Fig. 5. Relationships between stem P50 and thickness of the intervessel pit membrane (TPM). (A) Linear regression between P50 and TPM. The adjusted R2 and the 
level of significance are given. Each dot represents one individual (on average two individuals per species). (B–D) Transmission electron microscope images of 
intervessel pits of Brassicaceae species showing thicker pit membranes (arrows) in species that are more embolism resistant; all the herbaceous Brassicaceae spe-

cies studied have vestures (asterisks). (B) Raphanus raphanistrum. (C) Rapistrum rugosum. (D) Sisymbrium erysimoides. Scale bars represent 2 μm.
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Dória et al. — Embolism resistance in herbaceous eudicot stems8

grasses, Lens et al., 2016). Likewise, the intraspecific (between-
population) differences in stem P50 for both S.  orientale and 
H. incana (Fig. 3) are also explained by mean annual precipita-
tion: for both species, the more embolism-resistant populations 
occur in areas with less annual precipitation. This suggests that 
differences in habitat amongst herbaceous populations from the 
same species can increase the intraspecific plasticity in P50.

Percentage of lignified area per total stem area (PLIG) 
outcompetes intervessel pit membrane (TPM) as the explanatory 
variable explaining variation in stem P50

The percentage of lignified area per total stem area (PLIG), 
which is mainly defined by the amount of woodiness in the 
herbaceous stems as observed in a cross-section, is the character 
that best explains the variation of embolism resistance in stems, 
with more lignified stems being more resistant to embolism 

(Fig.  4). Since the germination time of the herbaceous spe-
cies on Tenerife does more or less converge after the arrival of 
the rains in autumn and winter, we believe that the differences 
in woodiness is species and/or niche specific rather than de-
pendent on major differences in stem age between species. For 
example, the three species (Raphanus raphanistrum, Sinapis 
arvensis and the population of Sisymbrium orientale from the 
more humid area) collected in Vilaflor village (sampling site 4 
of Supplementary Data Fig. S1) show a 2-fold difference in the 
degree of woodiness matching nicely with stem P50, despite the 
fact that these three populations occurred along the same road 
(Supplementary Data Tables S1 and S2). The relationship be-
tween characters related to higher stem lignification and higher 
absolute values of P50 has been recorded for different plant 
groups, both in woody (Hacke et  al., 2001; Jacobsen et  al., 
2005; Jansen et  al., 2009; Pereira et  al., 2017) and in herb-
aceous lineages (Lens et al., 2012b, 2013, 2016; Tixier et al., 
2013) and in closely related woody lineages that are derived 

Table 1. Stem anatomical variables that showed significant t-test differences between the two populations of Sisymbrium orientale 
growing in contrasting environments

Stem anatomical variable Mean for S. orientale  
from the drier site

Mean for S. orientale from  
the more humid site

t-test (P-value)

Proportion of lignified area per total stem area 0.57 0.32 0.00763
Thickness of intervessel pit membrane (nm) 349.14 303.43 0.04231
Thickness of intervessel wall (μm) 3.70 3.31 0.01194

Mean annual precipitation for the drier site is 264.3 mm and for the more humid site is 396.3 mm; the aridity indexes are 0.34 and 0.53, respectively.

PLIG = 0.32

TPM = 303 nm TPM = 349 nm

PLIG = 0.56

Mean P50 population = –4.0 MPa Mean P50 population = –4.9 MPa

A B

C D

Fig. 6. Intraspecific differences between two populations of Sisymbrium orientale growing in the more humid habitat (A, C) vs. the drier sampling site (B, D). (A, 
B) Light microscope image of cross-sections through the stems showing the population mean P50 values and proportion of lignified area per total stem area (PLIG). 
Scale bars represent 500 μm. (C, D) Transmission electron microscope images of intervessel pits showing the population mean of thickness of the intervessel pit 

membrane (TPM) (arrows). Vestures are marked with an asterisk. Scale bars represent 2 μm.
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from herbaceous relatives (Dória et al., 2018). Differences in 
the proportion of the lignified area in the stem are also found 
at the intraspecific level in this study, with the more resistant 
population of S. orientale showing thicker intervessel walls and 
higher PLIG values compared with those of the more vulner-
able population (Fig. 6; Table 1). The higher PLIG values in the 
drier population could also be strengthened by the presumably 
earlier germination time in the area of El Escobonal (470 m 
asl), which is about 900 m lower than the colder (and wetter) 
site of Vilaflor (1400 m asl), making the stems of the drier (and 
lower) site older, enabling them to lignify more.

It is challenging to relate increased stem lignification func-
tionally with embolism resistance, since most lignification char-
acters do not directly influence embolism formation and spread 
in the 3-D network of angiosperm vessels. Indeed, the thickness 
of intervessel pit membranes (TPM) is more likely to affect the 
length of the tortuous and irregularly shaped pores that air–water 
menisci need to cross before air-seeding may occur, explaining 
the spread of embolism through intervessel pit membranes into 
adjacent conduits (Jansen et al., 2009; Lens et al., 2011, 2013; 
Li et al., 2016). Although the P50–TPM relationship is confirmed 
in our herbaceous eudicot data set (Fig. 5), TPM provides a much 
lower power to explain differences in P50 compared with the 

degree of woodiness as observed in a cross-section, calculated 
as the percentage of lignified area per total stem area (PLIG). 
This may seem surprising, but studies investigating the rela-
tionship between stem P50 and TPM amongst herbaceous species 
are scarce and the functional relevance of TPM in herbs might be 
less important compared with woody species. A few examples 
that suggest this poor P50–TPM relationship in herbs are: the P50 
– TPM relationship disappears in our study when only includ-
ing the Brassicaceae species; no link between P50 and TPM was 
found in a grass data set based on four species with contrasting 
P50 values (Lens et al., 2016); and a third study investigating 
closely related herbaceous and woody daisies showed that the 
P50–TPM relationship was retrieved only when the herbaceous 
data set was combined with the woody data set (Dória et al., 
2018). Evidently, more work on stem P50 and additional ana-
tomical measurements based on the same – properly fixated – 
herbaceous stems is needed to shed more light on the functional 
relevance of TPM in herbs, which should in theory match the 
hydraulic importance of TPM as observed in shrubs and trees (Li 
et al., 2016).

Relationships between increased lignification and thicker 
intervessel pit membranes have been reported, which could ex-
plain the indirect correlation between higher lignification and 
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Fig. 7. Principal component analysis of stem anatomical characters, mean annual precipitation and P50 on the first two axes. PLIG = proportion of lignified area 
per total stem area as observed in a cross-section; PFWFX = proportion of xylem fibre wall area per fibre area as observed in a cross-section; PR = mean annual pre-
cipitation; TWDV = thickness-to-span ratio of vessels; P50 = pressure inducing 50 % loss of hydraulic conductivity; DH = hydraulically weighted vessel diameter; 
TPM = thickness of intervessel pit membrane. Circles represent individuals of H. incana from humid (filled) and dry (open) sampling sites, while triangles refer 

to individuals of S. orientale from the humid (filled) and dry (open) sites. The squares represent the other individuals of Brassicaceae and Asteraceae studied.
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Dória et al. — Embolism resistance in herbaceous eudicot stems10

higher embolism resistance (Jansen et al., 2009; Li et al., 2016; 
Dória et al. 2018). These findings are in accordance with our 
results for the two populations of S. orientale collected in con-
trasting environments (Table 1; Fig. 6): the more resistant popu-
lation shows a higher proportion of lignified area in the stem, 
thicker intervessel wall, and thicker intervessel pit membranes. 
However, the TPM–lignification correlation disappears in our 
entire data set (including Asteraceae and Brassicaceae species), 
showing that increased lignification characters are not neces-
sarily linked to thicker intervessel pit membranes.

The mean precipitation explains both P50 and anatomical 
variation in stems of herbaceous eudicots

Mean annual precipitation explains both the variation in 
stem P50 and the variation in stem anatomical characters across 
the herbaceous species studied. It has been well documented 
that environmental factors influence P50 (Maherali et al., 2004; 
Choat et al., 2012; Trueba et al., 2017) as well as anatomical 
traits (Carlquist, 1975; Baas et  al., 1983; Lens et  al., 2004; 
Dória et al., 2016; O’Brien et al., 2017). In our study, popula-
tions from drier sites show stems with more negative P50 values 
and more pronounced lignification, such as the proportion of 
lignified area per total stem area (a measure of the amount of 
woodiness) and the proportion of xylem fibre wall area per fibre 
area as observed in a cross-section. These characters are most 
associated with the first PCA axis (Fig. 7).

Our results show that the common pattern observed for woody 
species, i.e. a shift in rainfall patterns associated with survival 
and distribution of trees and shrubs (Engelbrecht et al., 2007; 
Allen et al., 2010; Trueba et al., 2017), and drought-induced 
tree mortality associated with substantial loss of hydraulic 
conductivity across taxa and biomes (Adams et al., 2017), is 
also true for herbaceous species (see also the first section of 
the Discussion). At the same time, different environment condi-
tions also impact stem anatomical characters allowing plants to 
adapt to changing climates (Carlquist, 1975; Baas et al., 1983; 
Martinez-Vilalta et al., 2010; Kattge et al., 2011).

Across woody trees, a lineage-specific sub-set of stem ana-
tomical traits can be linked to drought-induced embolism re-
sistance, such as increased wood density (linked to fibre wall 
thickness in angiosperms; Chave et al., 2009; Zieminska et al., 
2013), increased thickness-to-span ratio of conduits (Hacke 
et al., 2001; Bouche et al., 2014), thicker intervessel pit mem-
branes (Jansen et al., 2009; Lens et al., 2011; Li et al., 2016; 
Dória et  al., 2018) and narrower vessel diameters (Poorter 
et al., 2010; Hacke et al., 2016; Olson et al., 2018). Amongst 
herbaceous species, fragile stems also need to be reinforced 
by a suite of mechanical characters, as shown in our study: 
individuals occurring in drier areas show a higher degree of 
lignification/woodiness (PLIG) and thicker intervessel pit mem-
branes (Fig. 7) (see previous section). The increment of cellular 
support against implosion is often cited as the reason for this 
hydraulic–mechanical trade-off, which can result from either 
an increase in vessel wall to lumen ratio (Hacke et al., 2001; 
Jacobsen et al., 2007; Cardoso et al., 2018) or an increase in 
fibre matrix support (more and thicker walled xylem fibres) 
(Jacobsen et al., 2005, 2007; Pratt and Jacobsen, 2017; Dória 
et al., 2018). For the herbaceous species studied here, we found 

the latter relationship, demonstrated by the correlation between 
a higher proportion of xylem fibre cell wall per fibre (PFWFX) and 
more negative P50. Both kinds of cellular reinforcements, due to 
either vessel wall reinforcements or a more pronounced sur-
rounding fibre matrix, would result in increasing xylem density 
offering support against implosion. In accordance with this hy-
draulic–mechanical trade-off, collapse of xylem conduits was 
only observed in cells that lack a robust support of the fibre ma-
trix, for instance in leaves (Cochard et al., 2004; Brodribb and 
Holbrook, 2005; Zhang et al., 2016) and in low-lignin stems 
of poplar mutants (Kitin et al., 2010). Our study confirms that 
increasing the mechanical strength of fragile herbaceous stems 
using a suite of lignification characters may be highly relevant 
to acquire a higher level of embolism resistance.

Another aspect of the hydraulic–mechanical relationship in 
our data set is highlighted by the negative correlation between the 
thickness-to-span ratio of vessels (TWDV), determining the resist-
ance to implosion of the conduit, and the hydraulically weighted 
vessel diameter (DH). Since there is a significant relationship be-
tween TWDV and DH, but not between TWDV and the thickness of 
the vessel wall (TVW), it can be concluded that vessel diameter 
impacts much more the variation of TWDV than the thickness of 
vessel wall. It is known that larger vessel lumina increase hydraulic 
conductivity (Tyree and Zimmerman, 2002) and, because in our 
data set vessel wall thickness remains more or less the same, it 
gives rise to larger vessels that become mechanically weaker and 
potentially more vulnerable (Preston et al., 2006; Zanne et al., 
2010; Pratt and Jacobsen, 2017). However, in our data set, P50 is 
not correlated with DH, with TVW or with TWDV, meaning that the 
vessel diameter and thickness-to-span ratio of vessels do not im-
pact embolism resistance in our herbaceous data set.

In conclusion, this study investigated structure–function re-
lationships in stems of seven herbaceous Brassicaceae occur-
ring in different vegetation zones across the island of Tenerife 
and merged the data set produced with a similar data set for 
herbaceous Asteraceae growing on the same island. The 2-fold 
difference in embolism resistance found here shows that stems 
of herbaceous eudicots are able to deal with a range of nega-
tive pressures inside xylem conduits, although the P50 range in 
woody trees remains considerably higher. In addition, mean an-
nual precipitation is the major determinant influencing both em-
bolism resistance and anatomical characters in the herbaceous 
stems, demonstrating the predictive value of both characters 
with respect to survival and distribution of herbs along environ-
mental gradients. This improves our understanding of the evo-
lutionary and ecological significance of embolism resistance in 
non-woody species. Our results also show that the degree of 
woodiness (PLIG) outcompetes the thickness of intervessel pit 
membranes (TPM) as the most powerful character determining 
embolism resistance in stems of herbaceous eudicots studied. 
This may question the hydraulic relevance of TPM in herbs, al-
though many more observations on embolism resistance and 
anatomical observations on herbaceous plants need to be car-
ried out before a final conclusion can be reached.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.
oup.com/aob and consist of the following. Figure S1: map of 
Tenerife with the five sampling sites, each corresponding to 
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unique aridity indices. Table  S1: hydraulic parameters of the 
herbaceous Brassicaceae species studied. Table S2: stem ana-
tomical measurements of the herbaceous Brassicaceae species 
studied, along with the aridity indices and values for mean 
annual precipitation. Table S3: analysis of covariance of spe-
cies and mean precipitation explaining the variance in P50 of 
the herbaceous Brassicaceae and Asteraceae species studied. 
Table  S4: multiple regression model of anatomical features 
explaining the variance in P50 of the herbaceous Brassicaceae 
and Asteraceae species studied. Table S5: permutational multi-
variate analysis of variance of mean annual precipitation ex-
plaining the variance in P50 and in the main stem anatomical 
characters of the herbaceous Brassicaceae and Asteraceae spe-
cies studied.
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