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ABSTRACT 

Genomic selection - the prediction of breeding values using DNA polymorphisms - is a 
disruptive method that has widely been adopted by animal and plant breeders to increase 
productivity. It was recently shown that other sources of molecular variations such as those 
resulting from transcripts or metabolites could be used to accurately predict complex traits. 
These endophenotypes have the advantage of capturing the expressed genotypes and 
consequently the complex regulatory networks that occur in the different layers between 
the genome and the phenotype. However, obtaining such omics data at very large scales, 
such as those typically experienced in breeding, remains challenging. As an alternative, we 
proposed using near-infrared spectroscopy (NIRS) as a high-throughput, low cost and non-
destructive tool to indirectly capture endophenotypic variants and compute relationship 
matrices for predicting complex traits and coined this new approach “phenomic selection” 
(PS). We tested PS on two species of economic interest (Triticum aestivum L. and Populus 
nigra L.) using NIRS on various tissues (grains, leaves, wood). We showed that one could 
reach predictions as accurate as with molecular markers, for developmental, tolerance and 
productivity traits, even in environments radically different from the one in which NIRS were 
collected. Our work constitutes a proof of concept and provides new perspectives for the 
breeding community, as PS is theoretically applicable to any organism at low cost and does 
not require any molecular information. 
 
ARTICLE SUMMARY: 
Despite its widely adopted interest in breeding, genomic selection - the prediction of 
breeding values using DNA polymorphisms - remains difficult to implement for many species 
because of genotyping costs. As an alternative or complement depending on the context, we 
propose “phenomic selection” (PS) as the use of low-cost and high-throughput phenotypic 
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records to reconstruct similarities between genotypes and predict their performances. As a 
proof of concept of PS, we made use of near infrared spectroscopy applied to different 
tissues in poplar and wheat to predict various key traits and showed that PS could reach 
predictions as accurate as with molecular markers.  
 
RUNNING TITLE: 
The concept of phenomic selection 
 
KEY WORDS: 
Poplar, Wheat, breeding, endophenotypes, NIRS 
 

INTRODUCTION 

To meet the world’s current and future challenges, especially in terms of food and 
energy supplies, there is a great need to develop efficient crop varieties, livestock races or 
forest materials through breeding. Until recently, the selection of promising individuals in 
animal and plant breeding was mostly based on their phenotypic records. This approach was 
a strong limit to genetic progress as the high costs of phenotyping strongly constrain the 
number of candidates that can be evaluated, especially when there are interactions between 
individuals and environments that necessitate the evaluation of selection candidates in 
various environments. Another strong constraint – typical in perennial crops, trees or 
animals – is that it can sometimes take several years to evaluate phenotypes, which 
increases the duration of selection cycles. These limitations are some of the main reasons 
why genomic selection (GS) has become so popular in the last two decades. Its principle is 
based on a combination of phenotypic records and genome-wide molecular markers to train 
a prediction model that can in turn be used to predict the performances of – potentially 
unphenotyped – individuals (Meuwiseen et al. 2001). We can thus select more individuals 
faster, which increases selection efficiency. The development of high-throughput genotyping 
tools at decreasing costs has made GS possible for many animal and plant species. It can be 
used both in pre-breeding to screen diversity material (Crossa et al. 2016; Yu et al. 2016) and 
in breeding to make the schemes more efficient (Heffner et al. 2010; Meuwissen et al. 2013). 
However, a great number of species are still orphans of any genotyping tool, and for many 
others, genotyping costs remain a limit to the implementation of GS in pre-breeding and 
breeding. In addition, genotyping thousands to millions of individuals (potentially each year) 
is a challenge that consequently remains inaccessible for most species. 

One of the reference GS models is the ridge regression BLUP (RR-BLUP, Whittaker et 
al. 2000; Meuwiseen et al. 2001) in which a penalized regression is made on all markers 
simultaneously. This model assumes that the genes affecting the trait of interest are spread 
across the whole genome and that all of these genes have small effects. Despite its 
simplicity, this model has been proven one of the most effective in many situations, except 
for when major genes contribute to trait architecture. Interestingly, this model is equivalent 
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to the genomic BLUP model (G-BLUP, Habier et al. 2007; Goddard et al. 2009; Hayes et al. 
2009; Zhong et al. 2009) in which markers are used to estimate a realized genomic 
relationship matrix between individuals, also called kinship. This framework means that we 
can compress genome-wide information from numerous molecular markers into summary 
statistics (kinship coefficients between individuals) without diminishing prediction accuracy. 
Considering this fact, we should ask the question: are there more efficient alternatives than 
genotyping to estimate the kinship matrix? In the last years, it was proposed to use 
endophenotypes (MacKay et al. 2009) such as transcripts (Fu et al. 2012; Guo et al. 2016; 
Zenke-Philippi et al. 2016; Westhues et al. 2017), small RNAs (Seifert et al. 2018) or 
metabolites (Riedelsheimer et al. 2012; Feher et al. 2014; Ward et al. 2015; Fernandez et al. 
2016; Xu et al. 2016; Guo et al. 2016; Schrag et al. 2018) as regressors or to estimate kinship. 
These endophenotypes correspond to different molecular layers between the genome and 
the phenotype, which permits the integration of interactions and regulatory networks when 
getting closer to the phenotypes. These kinds of variables have proven to be efficient to 
predict integrative traits using the same statistical models as those classically used in GS. 
These regressors have the advantage of capturing expressed genotypes, but they remain too 
expensive to be routinely applied on the large scales typically dealt with by breeders. It is 
interesting to note that even with a small portion of the transcripts or metabolites sampled 
on a single tissue in a single environment and sometimes at very early stages, it was possible 
to compute kinship matrices allowing to reach predictive abilities similar to those obtained 
with molecular markers (Riedelsheimer et al. 2012; Xu et al. 2016). One could thus consider 
the possibility of using cheaper and easier techniques to capture endophenotypic variations.  

Near-infrared spectroscopy (NIRS) is a high-throughput, non-destructive and low-cost 
method routinely used to estimate reflectance of a sample for numerous wavelengths. This 
reflectance is mainly related to the presence of chemical bonds in the analysed tissue and as 
a result is expected to be related to endophenotypes. We suppose that the reflectance at 
each of the numerous wavelengths can be considered as an integration of numerous 
endophenotypic variations. We thus propose to evaluate the efficiency of NIRS to make 
predictions with G-BLUP (or equivalently, RR-BLUP) using these traits instead of molecular 
markers. Numerous studies have demonstrated the usefulness of NIRS for barcoding 
samples and discriminating species or varieties (Bertrand et al. 1985; Adedipe et al. 2008; 
Espinoza et al. 2012; Fischnaller et al. 2012; Abasolo et al. 2013; O’Reilly-Wapstra et al. 
2013; Meder et al. 2014; Lang et al. 2017) and have thus suggested that NIRS could be 
considered as a genetic marker (Cruickshank and Munck 2011) Moreover, some studies have 
shown that NIRS can capture some genetic variability by estimating the heritability of the 
spectrum and even mapping corresponding quantitative trait loci (QTL, O’Reilly-Wapstra et 
al. 2013; Posada et al. 2008; Diepeveen  et al. 2012; Hein and Chaix 2014). However, to the 
best of our knowledge, no studies have proposed using NIRS to perform “phenomic 
selection” (PS), which we define as the use of high-throughput phenotyping to obtain 
numerous variables which can be used as regressors or to estimate kinship in the statistical 
models classically used in GS. We emphasize that the concept of phenomic selection is 
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radically different from the classical use of NIRS prediction. In the classical methodology, 
NIRS is collected on a sample to make prediction on that particular sample for traits of 
various complexity (from chemical composition (Foley et al. 1998) to yield (Ferrio et al. 2005; 
Cabrera-Bosquet et al. 2012; Weber et al. 2012; Aguate et al. 2017) using a formula that has 
previously been calibrated. On the other hand in PS, NIR reflectances are considered in the 
same way as genomic or endophenotypic regressors, at the genotypic level rather than the 
individual level, which allows making predictions in any environment without having any 
environment specific NIRS. In PS we suppose that once NIR reflectances are analyzed in one 
experiment (collections of seed, a nursery, a trial or a controlled experiment) they could be 
used as regressors or to estimate a kinship matrix to make predictions in any other 
experiment, as long as relevant phenotypic data are available to calibrate the statistical 
model, like in GS with molecular markers. 

There are several advantages to this approach. One can obtain NIRS for any plant or 
animal species at a lower cost than genotyping and potentially without particular treatment 
of the samples prior to the analysis such as DNA or RNA extraction. One can also obtain NIRS 
directly in the field thanks to portable devices (Ecarnot et al. 2013; Teixera dos Santos et al. 
2013) or autonomous high-throughput vectors, such as phénomobiles (Madec et al. 2017) 
that generate hyperspectral images (Diago et al. 2013; Peerbhay et al. 2013). NIRS can even 
be obtained non destructively on seeds before sowing. As a result, prediction-based 
selection would be possible for any species and at a low enough cost to make it interesting 
to implement, even if its results are less accurate than those of GS. As a proof of concept of 
PS, we report an evaluation of the usefulness of NIRS for predicting quantitative traits of 
economic interest within two different species, a tree (poplar) and a cereal (winter wheat) 
using various tissues (grains, leaves, wood) and under different environments, and compare 
the results to those of a GS prediction based on several thousand SNPs. 

MATERIALS AND METHODS 

Data 

Genetic material and experimental designs 

Wheat: The panel was composed of 228 European elite varieties of winter wheat 
released between 1977 and 2012, 89% of which have been released since 2000. 72.8% of 
these varieties are in the panel introduced in Ly et al. (2018). The full panel was sown in one 
trial in Clermont-Ferrand (France) in 2015/2016. This trial was an augmented design with 
two treatments: one drought treatment under rain-out shelters (DRY), and one irrigated 
treatment (IRR) next to it. There was a difference of 223 mm in water supply (rainfall and 
irrigation) between the two treatments at the end of the experiment. For both treatments, 
the panel was divided into eight blocks of precocity with one replicate within the same block 
for 64 varieties and no replicates for the other 164, except for four checks, which were 
replicated three times in each block. Phenotypes and NIRS were collected in these two 
reference environments. A subset of 161 varieties (together with 59 additional varieties that 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/302117doi: bioRxiv preprint first posted online Apr. 16, 2018; 

http://dx.doi.org/10.1101/302117
http://creativecommons.org/licenses/by/4.0/


Rincent et al. Phenomic Selection 

5 

were not used in the present study because they were not in the panel of 228) were sown 
and phenotyped in six independent environments located in Estrées-Mons (France, 
2011/2012 and 2012/2013) and Clermont-Ferrand (France, 2012/2013) with two treatments 
corresponding to two levels of nitrogen input (intermediate and high). This subpanel was 
divided into six groups of earliness and each group was repeated in two blocks. Four checks 
were present in each block. 

Poplar: The population was an association population comprising 1,160 cloned 
genotypes representative of the natural range of the species in Western Europe and 
previously described (Guet et al. 2015; Faivre-Rampant et al. 2016; Gebreselassie et al. 
2017). Clonally replicated trials of subsets of this association population were established in 
2008 at two contrasting sites in central France (Orléans, ORL) and Northern Italy (Savigliano, 
SAV). At each site, a randomized complete block design was used with a single tree per block 
and six replicates per genotype. Growth data collected in each design clearly indicated that 
the Italian site was more favorable than the French site (Guet et al. 2015; Gebreselassie et 
al. 2017). 

NIRS data 

Wheat: NIRS data were obtained on flag leaves and harvested grains from the two 
treatments of the drought trial in Clermont-Ferrand (France) in 2015/2016. For each variety 
in each treatment, twenty flag leaves were sampled on one plot at 200 degree days after 
flowering. The samples were oven dried at 60°C for 48 h. Leaves were milled (Falaise miller, 
SARL Falaise, France), and the powder was analyzed with a FOSS NIRS 6500 (FOSS 
NIRSystems, Silver Spring, MD) and its corresponding softwares (ISIscanTM and WINisiTM 
4.20). For each variety in each treatment, 200 g of grains harvested at one plot were 
analyzed with a FOSS NIRS XDS (FOSS NIRSystems, Silver Spring, MD) and its corresponding 
softwares (ISIscanTM and WINisiTM 4.20). For leaf powder and grain, absorbance was 
measured from 400 to 2500 nm with a step of 2 nm. 5 varieties were removed from the 
dataset because their leaf absorbance was abnormal, resulting in a final panel of 223 
varieties. The resulting spectra were loaded into R software (R core team, 2017) to be 
pretreated using custom R code. They were normalized (centered and scaled) and their first 
derivative was computed using a Savitzky-Golay filter (Savitzky and Golay, 1964) with a 
window size of 37 data points (74 nm) implemented in the R package signal (signal 
developers, 2013). In the end, each variety in each treatment was characterized by a 
transformed spectrum of flag leaf powder and a transformed spectrum of grains. 

Poplar: NIRS was carried out on wood from stem sections collected at 1 m above 
ground on 2-year-old trees for 1,081 genotypes in three blocks at Orléans (total of 2,860 
samples) and 792 genotypes in three blocks at Savigliano (total of 2,254 samples). After 
harvest, the wood samples were oven dried at 30°C for several days, cut into small pieces 
with a big cutter and milled using a Retsch SM2000 cutting mill (Retsch, Haan, Germany) to 
pass through a 1-mm sieve. The wood samples were not debarked prior to milling. After 
stabilization, wood powders were placed into quartz cups for NIR collection with a Spectrum 
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400 spectrometer (Perkin Elmer, Waltham, MA, USA) and its corresponding software 
(SpectrumTM 6.3.5). For each sample, the measurement consisted of an average of 64 scans 
done while rotating the cups over the 10,000 cm-1 - 4,000 cm-1 range with a resolution of 8 
cm-1 and a zero-filling factor of 4, resulting in absorbance data every 2 cm-1. The resulting 
spectra were loaded into R software (R core team, 2017) to be processed using custom R 
code. They were first restricted to the 8000 cm-1 - 4000 cm-1 range because the most distant 
part of the spectra (8000 cm-1 - 10,000 cm-1) appeared to be quite noisy. Then, the restricted 
spectra were normalized (centered and scaled), and their first derivative was computed 
using a Savitzky-Golay filter (Savitzky and Golay, 1964) with a window size of 37 data points 
(74 cm-1) implemented in the R package signal (signal developers, 2013). Finally, these 
normalized and derived spectra were averaged by genotype at each site. 

SNP data 

Wheat: The 228 wheat varieties were genotyped with the TaBW280K high-
throughput genotyping array described in Rimbert et al. (2018). This array was designed to 
cover both genic and intergenic regions of the three subgenomes. Markers with a minor 
allele frequency below 1%, or with a heterozygosity or missing rate above 5% were removed. 
Redundant markers were filtered out. Eventually, we obtained 84,259 SNPs, either 
polymorphic high resolution or off-target variants, with an average missing data rate of 
0.83%. Missing values were imputed as the marker frequency. 

Poplar: The poplar association population was genotyped with an Illumina Infinium 
BeadChip array (Faivre-Rampant et al. 2016) yielding 7,918 SNPs for 858 genotypes. Missing 
values were rare (0.35%) and they were imputed with FImpute (Sargolzaei et al. 2014). The 
data were restricted to the subset of 562 genotypes with SNP data and NIRS data at both 
sites. Within this set, SNPs with a minor allele frequency below 1% were discarded, yielding a 
final SNP dataset of 7,808 SNPs. 

Phenotypic data 

Wheat: The 228 wheat varieties were phenotyped for heading date (HD) and grain 
yield (GY) at the two environments in which the NIRS analysis was conducted (drought 
experiment in Clermont-Ferrand 2015/2016). The subpanel of 161 varieties was phenotyped 
for the same traits in six independent environments. In each environment, the phenotypic 
data were adjusted for micro-environmental effects using the random effect block and when 
necessary by modeling spatial trends using two-dimensional penalized spline (P-spline) 
models as implemented in the R package SpATS (Rodríguez-Álvarez et al. 2016). 

Poplar: The poplar association population was evaluated at each of the two sites for 
the following traits on up to six replicates by genotype: height at 2 years at Orléans (HT-
ORL), circumference at 1 m above ground at 2 years at both sites (CIRC-ORL and CIRC-SAV), 
bud flush at both sites (BF-ORL and BF-SAV) and bud set at both sites (BS-ORL and BS-SAV) as 
discrete scores for a given day of the year (see Dillen et al. (2009) and Rohde et al. (2011) for 
details on the scales used) and resistance to rust at Orléans (RUST-ORL) as a discrete score of 
susceptibility on the most affected leaf of the tree and on a 1 to 8 scale. Within each site, the 
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phenotypic data were adjusted for micro-environmental effects using random effect block 
and/or spatial position when needed following a visual inspection of spatial effects with a 
variogram as implemented in the R package breedR (Muñoz and Sanchez 2017). Finally, the 
adjusted phenotypes were restricted to the subset of 562 genotypes with SNP and NIRS data 
for computing an averaged genotypic value for each trait by genotype within each site for 
further analyses. 

Genetic variance captured by NIRS 

Genomic heritability and partition of phenotypic variance along spectra 

The estimation of genomic heritability was based on the following bivariate statistical 
model across environments: 

, 
where  are the phenotypic values (absorbance for a given wavelength) in each 
environment,  is a fixed effect of the environment,  is a vector of random polygenic effect 

with ,  being the scaled realized relationship matrix (see 
below),  is a vector of independent and normally distributed residuals with 

, and  and  are design matrices relating observations to the 
effects. 

SNPs were used to estimate the genomic relationship matrix ( ) between 
individuals, following the formula of VanRaden (Vanraden 2008): 

, 
where  and  are the genotypes of individuals i and j at marker l (  = 0 or 1 for 
homozygotes, 0.5 for heterozygotes),  is the frequency of the allele coded 1 for the marker 
l, and  is the average empirical marker variance.  was obtained by scaling  to have a 
sample variance of 1 (Kang et al. 2010; Forni et al. 2011). 

Genomic heritability was estimated for each wavelength within each environment 

(m) as follows: , with  and  the REML estimates of  and , 
obtained with the Newton-Raphson algorithm implemented in the R package sommer  
(Covarrubias et al. 2016). 

Following Yamada et al. (1988), the variance/covariance estimates from the 

previously defined bivariate mixed-model were used to compute estimates of genetic ( ), 

genetic by environment ( ) and residual ( ) variances across sites as follows: 

, , . 
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Association mapping of NIRS reflectance 

Association mapping was carried out along spectra considering the absorbance at a 
given wavelength as a trait in a bivariate setting and using previous estimates of genetic and 
residual variances (EMMAX philosophy as previously proposed in the multi-trait mixed-
model approach (Korte et al. 2012)). 

Genomic and phenomic predictions 

The efficiency of genomic and phenomic predictions was evaluated by cross-
validations in two types of scenarios (Fig. 1). In scenario S1, NIRS analysis and cross-
validation were applied to the same environment (Fig. 1 a). In scenario S2, cross-validation 
was applied to independent environments: the environment(s) in which NIRS was collected 
and the environment in which the cross-validation was applied (calibration and prediction) 
were different (Fig. 1 b). In S1, the objective was to limit expensive or labor-demanding 
phenotyping to a calibration set of reduced size and to predict the remaining individuals 
using NIRS. In scenario S2, one experiment (or a nursery) was dedicated to collecting the 
NIRS of the calibration set and the predicted set, and a multi-environment trial was 
dedicated to phenotyping the calibration set. The main difference between S1 and S2 was 
that in S1, NIRS could potentially capture both genetic and  variances, leading to 
environment-specific predictions. 
 

 
Figure 1 Schematic representation of the concept of phenomic selection, including the two 
scenarios tested in the present work: (a) S1, where the calibration model is trained with true 
values (TVs) and NIRS data collected at the same - reference - site and (b) S2, where the 
calibration model is trained with NIRS data collected at the reference site and TVs from 
other(s) environment(s). In both scenarios, the outcome of the prediction consists of 
predicted values (PVs). 
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For both scenarios, 5- and 8-fold cross-validation procedures repeated 20 times were 

used for poplar and wheat, respectively. A larger fold-number was considered for wheat in 
comparison to poplar because the sample size in the wheat dataset (n = 223 in the panel, 
and n=161 in the subpanel) was lower than the sample size in the poplar dataset (n = 562). 
Predictive ability was computed as the Pearson correlation between the predictions and 
adjusted means. For genomic predictions, we tested two complementary reference models: 
G-BLUP and Bayesian LASSO (Park and Casella 2008; de los Campos et al. 2009. The 
underlying assumptions of these two models are that the SNP effects are normally 
distributed for G-BLUP, whereas Bayesian LASSO allows for departure from normality (i.e., 
SNPs with bigger effects). G-BLUP and Bayesian LASSO were run with the R packages rrBLUP 
(Endelman 2011) and BGLR (de los Campos et al. 2012), respectively. For Bayesian LASSO, 
the chain was composed of 30,000 iterations with a burn-in of 5,000 iterations, and the 
hyperparameter λ was chosen as recommended in Table 1 of de los Campos et al. (2012). 
For phenomic predictions, we used RR-BLUP but considered NIRS data instead of molecular 
markers. Prior to the analysis, the pretreated NIRS matrices were centered and scaled. The 
shrinkage parameter was estimated within the cross-validation scheme on the calibration 
set only to avoid overfitting. In other words, the reported predictive abilities for NIRS 
prediction were unlikely to be overestimated because of model optimization. 

Expected genetic gain with genomic and phenomic selection in a simple example 

We ran simulations to illustrate the expected genetic gain with GS and PS that would 
be achieved in one cycle of selection for various combinations of costs and reliabilities. 
Reliability was defined as the squared correlation between true breeding values (TBV) and 
the genomic or NIRS predicted values (PV). 

We considered a situation in which a given budget (200,000 €) was available to 
predict the performances of selection candidates with NIRS or genotyping. Depending on the 
costs of the methods (DNA extraction and genotyping for GS or tissue sampling and NIRS 
acquisition for PS), we computed the number of selection candidates (N) that could be 
analyzed. The TBV and genomic or NIRS PV of these N individuals were then sampled from a 
multivariate normal distribution with means equal to 0, variances equal to 1 and covariance 
equal to the square root of reliability (R package mvtnorm (Genz et al. 2017)). The expected 
genetic gain was then computed as the difference between the average TBV of the 400 
individuals having the best PV and the average TBV of the population (equal to 0). We 
selected 400 individuals because for many species, it is feasible to apply heavier phenotyping 
(multi-environment trials) on a few hundred individuals. We considered two situations; in 
the first situation, the expected genetic gain of GS and PS was computed for various 
genotyping and NIRS costs with a reliability set to 0.4. In the second situation, the reliability 
of GS and PS varied between 0.3 and 0.6, and genotyping and NIRS costs were set to 50 € 
and 4 €, respectively. For each combination of parameters (reliabilities and costs of GS and 
PS), the simulation procedure was repeated 1000 times to obtain stable results. 
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Because genotyping and NIRS costs are highly dependent on the species and the 
number of samples analyzed, we let the genotyping costs (DNA extraction and genotyping 
itself) vary between 25 € and 100 € and the NIRS costs (sample treatment and NIRS analysis 
itself) vary between 1 € and 8 € in the first situation. 

To provide concrete examples, we applied this simulation process with the 
reliabilities and costs that we experienced for wheat and poplar. GS costs were between 35 
€ and 50 € per individual for wheat and poplar, respectively, and PS costs were between 3 € 
and 2.5 € per individual for wheat and poplar, respectively. Reliabilities were estimated as 
the square of predictive abilities estimated by cross-validation divided by the heritability of 
the adjusted means. For each combination of trait, scenario, and NIRS data considered 
(tissue, environment), the increase in expected genetic gain using PS instead of GS was 
computed with the best performing GS model as a reference. 

RESULTS 

Genetic variability captured by NIRS 

We first sought to characterize the ability of NIRS to capture genetic variability by 
estimating genomic heritability and partitioning the variance into genetic ( ), genetic by 
environment ( ) and residual variances ( ) along the NIR spectrum collected on a panel 
of winter wheat (leaves and grains) and a population of black poplar (wood) grown in two 
contrasting environments. For both species and tissues, genomic heritability was highly 
variable along the spectrum with peaks above 60%, showing the existence of strong 
polygenic signals for some wavelengths (Fig. 2, Fig. S1). For a given species, the proportion of 

 variance could reach 24% (poplar), 54% (wheat leaves) or 71% (wheat grains) (Fig. 2). 
It is interesting to note that for at least half of the wavelengths, the cumulative proportion of 

 and  variances was above 15%, showing that the NIR signal was often partially 
related to genetics. The kind of tissue analyzed by NIRS seemed to matter, as shown by the 
comparison of variance partition along spectra obtained on wheat leaves and grains.  and 

 variances were higher and more stable along the spectrum for grains than for leaves. 
We ran association mapping along the NIR spectrum to identify wavelengths 

associated with major QTL (Fig. S1). In poplar, the signal appeared to be mainly polygenic 
with very few QTL detected, and the largest SNP R² was below 0.025 for any wavelength. In 
contrast, in winter wheat, we detected numerous large-effect QTLs. For some wavelengths, 
a single SNP could have an R² of 0.23 for leaves and of 0.11 for grains, and this SNP could be 
in spectrum regions of high or of low genomic heritability (Fig. S1). This finding means that 
depending on the wavelength, NIRS could capture highly polygenic relationships 
(wavelengths with high genomic heritability) or could tag specific regions of the genome 
(major QTLs). These two kinds of wavelengths can be useful for making predictions because 
they can potentially track the two main factors responsible for GS accuracy: relatedness and 
linkage disequilibrium.  
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Figure 2 Proportion of genetic (red), genetic by environment (green), and residual (blue) 
variances along the NIR spectrum of (a) winter wheat leaves, (b) winter wheat grains and (c) 
poplar wood. NIRS was performed on plant material collected on genotypes grown under 
favorable and unfavorable environmental conditions. The median normalized and derived 
spectra, along with their first and third quartiles across the genotypes under study, are 
indicated in gray. 

Comparing predictive abilities obtained with markers and with NIRS 

We estimated the efficiency of GS and PS to predict the performance of new 
individuals within a cross-validation framework. The performances of the individuals in the 
validation set were predicted with genotypic information in GS (G-BLUP and Bayesian LASSO 
models) and with NIRS only in PS (RR-BLUP model). We considered two scenarios: in S1, NIRS 
analysis and cross-validation were performed in the same environment (Fig. 1 a), whereas in 
S2, the environments in which the cross-validation was applied were different from those in 
which NIRS was obtained (Fig. 1 b). The broad-sense heritabilities of the adjusted means 
were above 0.8 for all traits in each environment (Table S1). 

In wheat, the predictive abilities of PS were highly variable and appeared to be 
dependent on the predicted trait and on the environment and tissue in which NIRS was 
measured (Fig. 3 a, b, c, d, Fig. 4). While combining NIRS collected in different environments 
or different tissues increased the predictive ability, this increase did not occur systematically. 
One major result is that for both traits, NIRS could lead to better predictions than molecular 
markers, even in the six independent environments (Fig. 3 c, d, Fig. 4). The gain with NIRS in 
comparison to molecular markers in S2 was up to 34% and 22% for heading date and grain 
yield, respectively. In each S2 environment and for both traits, there was always a type of 
NIRS that performed better or as well as the best GS model (Fig. 4). The gain was even 
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stronger in S1: NIRS led to an increase in predictive ability of up to 53% and 117% for 
heading date and grain yield, respectively. In poplar, the predictive abilities with NIRS were 
always lower than those with SNP, except for growth traits under S1 (Fig. 3 e). In the other 
cases, the predictive ability with NIRS varied depending on the trait and scenario considered, 
but they were always significantly greater than 0. In general, they were higher when the 
spectra were collected in the same environment (S1) than when spectra from another 
environment were used (S2), except for bud flush evaluated in one site and bud set 
evaluated in another site. Interestingly, irrespectively of the scenario, for some traits 
apparently unrelated to wood chemical properties, such as resistance to rust or bud set, 
NIRS predictive abilities were fairly high ranging between 0.34 and 0.53. 
 

 
Figure 3 Predictive ability of SNP (G-BLUP or Bayesian LASSO (BL) models) or NIRS (RR-BLUP 
model) when predicting the phenotypic values of individuals within a cross-validation in 
winter wheat (a, b, c, d) and black poplar (e). Two scenarios were considered for NIRS 
prediction: in S1, the RR-BLUP model was trained with NIRS data and phenotypes that were 
collected within the same environment (a, b, e), whereas in S2, NIRS and phenotypic data 
used to train the RR-BLUP model were collected in distinct environments (c, d, e). For wheat, 
two traits were considered: heading date (a, c) and grain yield (b, d). The bars of a, b, c, and 
d are labeled with the origin of the NIRS data (I: irrigated treatment, D: drought treatment), 
and the bars of e are labeled with the combination of trait and experiment (HT: height, CIRC: 
circumference, BF: bud flush, BS: bud set, RUST: resistance to rust, ORL: experimental design 
in Orléans, France, SAV: experimental design in Savigliano, Italy). The medians of the 
accuracies obtained over repeated cross-validations are reported as the height of the bars 
together with the first and third quartiles as confidence intervals. 
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Figure 4 Details of the predictive abilities obtained in scenario S2 for heading date (a) and 
grain yield (b) for wheat. In S2, the NIRS and phenotypic data used to train the RR-BLUP 
model were collected in distinct environments. The bars are labeled with the origin of the 
NIRS data (I: irrigated treatment, D: drought treatment). The medians of the predictive 
abilities obtained over repeated cross-validations are reported as the height of the bars 
together with the first and third quartiles as confidence intervals. 

Expected genetic gain with genomic and phenomic selection in a simple example 

To further evaluate the potential of PS with respect to GS, the expected genetic gain 
with both approaches was compared in a simple scenario in which a budget of 200,000 € 
could be spent to genotype or analyze the NIRS of selection candidates. The difference in 
efficiency between GS and PS was highly dependent on the genotyping and NIRS costs and 
on the reliability of the two approaches (Fig. 5). In the scenarios that we considered here, 
the expected gain of using PS instead of GS was between 11% and 127%. In extreme 
scenarios in which genotyping was cheap (25 €) and NIRS was expensive (8 €) or in which GS 
reliability (0.6) was much higher than PS reliability (0.3), PS was still better than GS. We 
applied the simulation process with the reliabilities and costs obtained in the wheat example 
(35 € for genotyping and DNA extraction and 3 € for sample treatment and NIRS acquisition). 
The increase of expected genetic gain with PS in comparison to GS was between +60% and 
+127% for heading date and between -10% and +222% for grain yield, depending on the 
tissue and environment used for NIRS acquisition and scenario considered (Table S2). In 
poplar, considering genotyping and NIRS acquisition costs of 50 € and 2.5 €, respectively, as 
well as the reliabilities estimated with cross-validation predictive abilities, the expected gain 
in genetic progress varied depending on the trait and scenario considered (Table S3). It was 
mainly positive for growth traits (-2 to 93%), bud set (-6 to 25%) and rust resistance (-10 to 
21%), whereas for bud flush, NIRS prediction did not seem to provide any advantage over 
regular SNP-based prediction. 
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Figure 5 Theoretical increase of expected genetic gain (%) by using NIRS instead of 
genotyping. a: Expected genetic gain for various genotyping and NIRS costs for a 
reliability of 0.4, a budget of 200,000 €, and a selection of 400 individuals. b: 
Expected genetic gain for various reliabilities, a budget of 200,000 €, genotyping 
and NIRS costs of 50 € and 4 €, respectively, and a selection of 400 individuals. For 
each scenario, true breeding values and estimated breeding values were simulated 
thanks to multivariate normal distributions with a covariance adapted to the 
chosen reliability. 

DISCUSSION 

In typical plant breeding programs, breeders have to select among thousands to 
millions of individuals. For most individuals, this selection is often based on a very small 
amount of phenotypic information because it is too expensive or simply impossible to make 
a precise phenotypic evaluation. It is also difficult and too expensive to genotype all 
individuals to apply GS, despite important economies of scales. Alternative approaches 
based on endophenotypes such as transcriptomes or metabolomes have been proposed to 
predict phenotypes (Fu et al. 2012; Riedelsheimer et al. 2012; Feher et al. 2014; Ward et al. 
2015; Fernandez et al. 2016; Guo et al. 2016; Xu et al. 2016; Zenke-Philippi et al. 2016; 
Westhues et al. 2017; Seifert et al. 2018; Schrag et al. 2018), but their relatively low 
throughput and high costs are still likely to hamper their deployment at a large scale. To 
increase genetic progress in this context, we propose a new approach in which we use NIRS 
as high-throughput phenotypes to make predictions at low costs. The basic idea of this 
approach, which we call “phenomic selection” (PS), is that the absorbance of a sample in the 
near-infrared range is mainly related to its chemical composition, which depends itself on 
endophenotypes and genetics. Therefore, NIRS is supposed to capture at least part of the 
genetic variance, and as a result, one could use it to make predictions of traits unrelated to 
the analyzed tissue or in independent environments. The process of PS is similar to GS, but 
instead of reference material and selection candidates being genotyped, they are analyzed 
by NIRS. 
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We applied PS to the NIR spectrum of different tissues sampled on an association 
population of poplar and a panel of elite winter wheat. By estimating the extent of genetic 
variance along the NIR spectrum of poplar wood and winter wheat leaves and grains, we 
could show that most wavelengths captured part of the genetic variability (Fig. 1). This result 
agrees with previous findings with eucalyptus wood (Hein and Chaix 2013), but whether this 
will still be true within pedigrees with a narrower genetic basis remains to be assessed. 
O’Reilly-Wapstra et al. (2013) have shown that NIR spectra collected on eucalyptus leaves 
could differentiate full-sibs, even though the extent of genetic variation captured was lower 
than at the inter-specific level. Still these results suggest that NIRS could be valuable to 
capture some Mendelian sampling and that PS would work within pedigrees, but this 
hypothesis should clearly be tested in future work. 

In the present work, the NIR spectra were specific to the environments in which they 
were obtained, but when they were analyzed jointly, we observed that  variance was 
superior to  variance for most wavelengths in both species. Posada et al. (2008) also 
reported a similar trend with coffee grains. This finding shows that even if the absorbances 
were partly environment specific, it should be possible to make predictions in independent 
environments. This result was further demonstrated by the good predictive abilities 
obtained with PS for most phenotypes in both species in scenario S2, i.e., when the 
environment in which we trained the calibration model was different from the environment 
in which we collected NIRS. For both species, PS abilities were in the same range as GS 
abilities, sometimes performing better and sometimes performing worse than one another. 
For wheat, the results were very encouraging as we always found a situation (combination of 
environment and tissue analyzed) for which NIRS performed better than GS, even in six 
independent environments. More importantly, even when the correlation between the S1 
and S2 environment was as low as 0.16 for the predicted trait (Table S4, GY in Mon12N-), PS 
could produce better predictions than GS (Fig. 4). In other words, a relationship matrix 
computed with NIRS obtained in one specific environment could be used to make 
predictions in completely different environments. These promising results obtained in 
scenarios S1 and S2 open the way to important opportunities in the plant breeding 
community. As revealed by our theoretical computations (Fig. 5), we expect PS to be able to 
generate large gains in genetic progress in comparison to GS, even in pessimistic scenarios. 
In the realistic scenarios that we experienced, the expected gain brought by using PS instead 
of GS could be up to 81% for wheat grain yield in scenario S2 (Table S2). 

Nevertheless, these simulations have to be considered with caution, because of the 
strength of the underlying hypotheses. Our work has shown the interest of the proposed PS 
approach within a given generation that may clearly be applicable within plant breeding 
programs to assess the performance of the candidate for selection. But, more work is clearly 
needed to establish the proportion of the variance captured by NIRS (and by 
endophenotypes) that is heritable in the narrow-sense and thus transmitted to the next 
generations to be further used at different stages of the breeding programs or in different 
breeding contexts. Indeed, similarly to endophenotypes we expect NIRS to capture non-
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additive genetic effects which may overestimate the expected genetic progress across 
multiple generations. Nevertheless on the other side it can be highly valuable to predict 
phenotypes, including the effect of interactions and regulatory networks, at key steps of the 
breeding schemes. In plant breeding, one major objective during the first generations is to 
produce numerous individuals with the same genotypes (by autofecondation, doubled 
haploid techniques or clonal reproduction) to allow for field evaluation in multi-environment 
trial (MET). Because this field evaluation is the most expensive step in the breeding schemes 
and because it is applied on replicable genotypes, PS would be of major interest to select 
among all candidates the genotypes that will be evaluated in the MET. In this situation, 
predicting phenotypes instead of additive values is clearly an advantage as the same 
genotypes can be replicated in many individuals. Another important question related to the 
efficiency of PS across multiple generations is about the frequency of formula update to 
maintain a sufficient level of accuracy. This question, which is also relevant for GS, must be 
addressed in future work. We also believe that future work should assess the efficiency of PS 
with NIRS obtained from tissues collected on young plants. Ideally, we would like PS to be 
efficient with NIRS collected on the youngest possible plant to have the information as early 
as possible and at low cost. We could show for wheat that for fixed material, NIRS collected 
on seeds, so before sowing, was efficient to run PS, which offers very interesting 
perspectives for this species. The studies on endophenotypic variations in maize 
(Riedelsheimer et al. 2012; Fu et al. 2012; Guo et al. 2016; Schrag et al. 2018), rice (Xu et al. 
2016) and wheat (Ward et al. 2015) also demonstrated that the characterization of 
germinated seeds or seedlings was efficient to estimate kinships resulting in accurate 
predictions. These results are promising, but this needs to be tested for other species and on 
other datasets. 

There are various applications of PS, which we see both as a complement and as an 
alternative to GS depending on the situation. The first obvious application of PS is its use 
when no genotyping tool is available at a reasonable cost, which is still the case for many 
orphan organisms. For these species, PS could potentially be a new efficient breeding tool to 
increase genetic progress. As mentioned before, a second application would be to use PS to 
screen nearly fixed material or clones, as PS (in the same manner as selection on 
endophenotypes) is likely to capture non-additive genetic effects. Even if the prediction 
accuracy is low, PS can be used to filter out a given proportion of selection candidates. One 
should define this proportion with respect to PS accuracy: the higher the accuracy, the more 
confident we are at filtering out many individuals without losing the best candidates. Note 
that even if PS is less accurate than GS, it could nevertheless be interesting to filter out the 
worst individuals considering the low cost of NIRS acquisition, and the fact that NIRS is often 
already routinely carried out (for example, in cereals or forest trees to predict quality traits). 
In a second step, one could use GS to make complementary predictions on a limited number 
of selection candidates. A last major application of PS would be to help conservation 
geneticists manage diversity collections. The use of genotyping to organize seed banks and 
to screen and define core collections is strongly limited by its cost. PS offers a new 
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opportunity to manage seed banks because it allows distance matrices to be computed 
cheaply and reliably. 

Considering that PS gave interesting results for both a tree and an annual crop 
regarding various traits related to development, productivity and tolerance to disease and 
using tissues of a completely different nature (wood, leaf, grain), we can expect PS to work 
in many other plants and possibly in animal species using NIRS on organic tissues or fluids. 
Our work constitutes a proof of concept and a first attempt at PS, which clearly opens new 
perspectives for the breeding community. Indeed, one could further optimize many 
parameters to increase PS efficiency. The differences observed here between the PS 
efficiencies reported for wheat and poplar could represent a first direction for improving the 
approach. Indeed, PS appeared to be more efficient in wheat than in poplar and several 
hypotheses could be proposed to explain this result. First, spectra were acquired on 
different spectrometers resulting in a broader wavelength range in wheat, which also 
covered the visible part of the electromagnetic spectrum. Consequently, the information 
brought by the spectra on wheat tissues was potentially richer than the one brought by the 
spectra on poplar. Second, we could see that in wheat a larger proportion of  and  
variance could be captured by the spectra regardless of the tissue sampled and that this was 
especially true for the lowest wavelengths (including the visible part), which were absent in 
poplar. Third, the tissues in which NIRS was collected differed, and this difference seems to 
be an important parameter as highlighted by the differences in predictive ability between 
leaf and grain in wheat.  

 Another possibility for the improvement of PS efficiency could be the optimization of 
the growing conditions of plants in the reference experiment. In wheat, it was typically 
better to use NIRS collected on plants grown in unfavorable conditions than in favorable 
conditions. This result might be explained by more pronounced dissimilarities between 
genetically distant individuals in conditions of stress. Therefore, there is a clear need to 
optimize these conditions. Once the NIRS data are collected, one could also try to improve 
the pretreatment of the signal and the statistical model of calibration. In our case, we 
choose as pretreatment the first derivative of the normalized spectrum, but other options 
could be tested, and these options might not necessarily be the same depending on the 
species considered, environment, tissue sampled or target trait. For calibrations, we have 
used RR-BLUP, but one might test other techniques, such as those typically allowing non-
additive effects or involving feature selection, to improve the accuracy of PS. These points 
clearly indicate that there is great room of improvement of PS, which will likely constitute in 
the near future an active field of research. Finally, the recent advent of portable NIR devices 
as well as of hyperspectral imaging allows this technology to be used in the field. Unmanned 
vehicles and robots are currently being developed and can already be used to automatically 
collect reflectance at an industrial scale (Madec et al. 2017; Aguate et al. 2017). These new 
developments will considerably increase the throughput and conversely decrease the cost of 
NIRS data. We thus expect that these technological advances will reinforce the advantages 
of the proposed PS. 
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Data availability 

The datasets generated during and/or analysed during the current study are available 
in the INRA Dataverse repository (https://data.inra.fr/). They can be accessed with the 
following link: http://dx.doi.org/10.15454/MB4G3T. 

Code availability 

R code used throughout the study is available upon request. 
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SUPPLEMENTARY DATA 

Supplementary figures 

Figure S1 Genomic heritability (color) and genetic correlation (black) along spectra collected 
on winter wheat leaves (a), winter wheat grains (b) and poplar wood (c). The genotypes 
were grown under two environmental conditions, unfavorable (red) and favorable (blue). 
The wavelengths at which absorbance is associated with at least one SNP having a major 
effect (R² higher or equal to 10%) are indicated with orange dots at the bottom of each 
graph. 
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Supplementary tables 

Table S1: Broad-sense heritabilities of the adjusted means. 
 

Species Location Year Treatment Code environment 
Trait 

identifier 
Trait name Heritability 

Wheat Clermont-Ferrand 2016 Irrigated IRR HD Heading date 0.94 

Wheat Clermont-Ferrand 2016 Irrigated IRR GY Grain yield 0.78 

Wheat Clermont-Ferrand 2016 Drought DRY HD Heading date 0.94 

Wheat Clermont-Ferrand 2016 Drought DRY GY Grain yield 0.75 

Wheat Estrée-Mons 2012 N+ Mon12N+ HD Heading date 0.97 

Wheat Estrée-Mons 2012 N+ Mon12N+ GY Grain yield 0.81 

Wheat Estrée-Mons 2012 N- Mon12N- HD Heading date 0.96 

Wheat Estrée-Mons 2012 N- Mon12N- GY Grain yield 0.83 

Wheat Estrée-Mons 2013 N+ Mon13N+ HD Heading date 0.98 

Wheat Estrée-Mons 2013 N+ Mon13N+ GY Grain yield 0.85 

Wheat Estrée-Mons 2013 N- Mon13N- HD Heading date 0.99 

Wheat Estrée-Mons 2013 N- Mon13N- GY Grain yield 0.86 

Wheat Clermont-Ferrand 2013 N+ Cle13N+ HD Heading date 0.98 

Wheat Clermont-Ferrand 2013 N+ Cle13N+ GY Grain yield 0.86 

Wheat Clermont-Ferrand 2013 N- Cle13N- HD Heading date 0.90 

Wheat Clermont-Ferrand 2013 N- Cle13N- GY Grain yield 0.88 

Poplar Orléans 2011 - ORL HT Height 0.88 

Poplar Orléans 2011 - ORL CIRC Circumference 0.86 

Poplar Orléans 2009 - ORL BF Bud flush 0.96 

Poplar Orléans 2009 - ORL BS Bud set 0.97 

Poplar Orléans 2009 - ORL RUST Rust resistance 0.89 

Poplar Savigliano 2010 - SAV CIRC Circumference 0.92 

Poplar Savigliano 2010 - SAV BF Bud flush 0.90 

Poplar Savigliano 2010 - SAV BS Bud set 0.92 
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Table S2: Increase of expected genetic gain (%) by using PS instead of GS for wheat. The 
expected genetic gain of PS and GS was estimated with the estimated heritabilities, the costs 
that we experienced (3 € and 35 € for PS and GS, respectively) and the predictive abilities 
obtained in cross-validation in scenarios S1 and S2. For each combination of scenario, trait, 
and NIRS data considered (tissue and environment), the increase of expected genetic gain of 
PS was estimated with the best performing GS model as a reference. 
 

 S1  S2 

 GY-IRR GY-DRY HD-IRR HD-DRY  GY HD 

max 94 222 121 127  81 98 

min -2 113 80 106  -10 60 
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Table S3: Increase of expected genetic gain (%) by using PS instead of GS for poplar. The 
expected genetic gain of PS and GS was estimated with the estimated heritabilities, the costs 
that we experienced (2.5 € and 50 € for PS and GS, respectively) and the predictive abilities 
obtained in cross-validation in scenarios S1 and S2. For each combination of scenario and 
trait, the increase of expected genetic gain of PS was estimated with the best performing GS 
model as a reference. 
 

Trait S1 S2 

HT-ORL 89 46 

CIRC-ORL 93 29 

CIRC-SAV 72 -2 

BF-ORL -66 -24 

BF-SAV -29 -78 

BS-ORL 18 -2 

BS-SAV -6 25 

RUST-ORL 21 -10 
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Table S4: Correlations of traits between S1 and S2 environments. 
 

Species S1 environment Trait S2 environment 

   Cle13N+ Cle13N- Mon12N+ Mon12N- Mon13N+ Mon13N- 

Wheat IRR GY 0.40 0.40 0.26 0.16 0.32 0.26 

Wheat DRY GY 0.36 0.30 0.31 0.31 0.35 0.38 

Wheat IRR HD 0.84 0.84 0.85 0.86 0.87 0.87 

Wheat DRY HD 0.84 0.84 0.88 0.87 0.86 0.86 

   ORL or SAV      

Poplar SAV or ORL CIRC 0.57      

Poplar SAV or ORL BF 0.85      

Poplar SAV or ORL BS 0.74      
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