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A B S T R A C T

High-throughput techniques for the compositional analysis of lignocellulosic biomass are essential to allow the
genetic analysis and genetic improvement of bioenergy feedstocks. In this study, we investigated the feasibility
of using near-infrared (NIR) spectroscopy for rapid assessment of wood chemical traits in a large sample of
Populus nigra L. individuals evaluated in clonal trials at two contrasting sites. Spectra were acquired from 5799
wood samples collected in 3 harvests corresponding to two coppice rotations at one site and one coppice rotation
at the second. Calibrations were developed and validated using 120 reference samples, representing spectral and
chemical variations in the samples. The resulting global and site specific calibrations for most of the traits were
at least good enough for ranking of genotypes, demonstrating the usefulness of NIR analysis for phenotyping the
studied population. Clonal repeatability (Hc

2) estimates of the studied traits based on all samples were moderate
to high (Hc

2 ranging from 0.57 to 0.89 in the 3 harvests). When data were pooled over coppice rotations or sites,
the genotype × environment interaction was more evident across sites than across rotations. However, the
interaction was smaller than the genotype main effect for all traits, except for glucose and extractives contents.
Importantly, the interaction resulted mainly from re-ranking of a few genotypes leaving a substantial amount of
stable and performant genetic material, which may encourage breeding for improved main wood components.
Optimization of the NIR analysis for assessing clonal trials would facilitate the exploitation of standing genetic
variation of energy or chemical related traits in tree breeding program.

1. Introduction

There is currently a considerable interest in moving to alternative
and sustainable sources of energy because of the increasing global
energy demand, depletion of fossil fuel reserves, fossil fuel-derived
climate change and energy related geopolitical tensions. To circumvent
some of the prevailing challenges, special focus has recently been given
to the production of biofuels from lignocellulosic biomass.
Lignocellulosic ethanol is expected to provide a large share of global
transportation fuel needs with much less adverse effects than fossil fuels
(Schubert, 2006; Sticklen, 2008). However, realizing this potential will

require the synchronized occurrence of genetically improved material,
suitable biomass production systems and bioconversion technologies
that efficiently convert biomass into bioethanol (Ragauskas et al., 2006;
Rubin, 2008).

Candidate biomass feedstocks for the production of second genera-
tion bioethanol comprise perennial grasses (e.g., switchgrass and
Miscanthus) and forest trees (e.g., poplars, Eucalyptus and willow)
(Abramson et al., 2010). Comparative advantages of poplars (Populus
spp. and hybrids) in the impending green economy include their rapid
growth rates (Bradshaw et al., 2000), good coppicing ability
(Ceulemans and Deraedt, 1999) and favourable cell wall chemistry
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(Guerra et al., 2013; Porth et al., 2013; Wegrzyn et al., 2010). In
particular, Populus nigra possesses many important characteristics such
as adaptability, rooting ability of stem cuttings and resistance to
diseases that make it attractive as parent in several hybrid breeding
programs in Europe (Cagelli and Lefevre, 1995; Frison et al., 1994).

The major source of lignocellulosic biomass is the plant cell wall, a
heterogeneous complex mainly composed of cellulose, hemicelluloses
and lignin, with the cellulose microfibrils and the hemicellulosic chains
being embedded in lignin (Rubin, 2008). For bioethanol production, the
polysaccharides (cellulose and hemicelluloses) are of particular interest
because their enzymatic hydrolyses release fermentable monomeric
sugars during saccharification. Poplars show substantial variability in
cell wall composition, with cellulose content ranging from 42 to 49%,
hemicellulose from 16 to 23%, and lignin from 21 to 29% (Sannigrahi
et al., 2010). More recently, substantial genetic variation in cell wall
chemical traits has been reported for black cottonwood (P. trichocarpa)
(Guerra et al., 2016; Porth et al., 2013; Wegrzyn et al., 2010) and black
poplar (P. nigra) (Guerra et al., 2013).

A critical bottleneck in efficient and cost-effective biomass sacchar-
ification for bioethanol production is the natural recalcitrance of plant
cell walls to enzymatic hydrolysis (Rubin et al., 2007). The most
obvious way to reduce biomass recalcitrance is through genetic
improvement of trees for wood chemical composition. Poplar breeding
for bioenergy can take advantage of past improvements in growth and
disease resistance. However, current poplar clonal varieties have not
been selected and bred for the qualitative characteristics of the biomass.
Thus, there is a need to explore the potential for improvement of cell
wall composition to release fermentable sugars and subsequently
integrate biorefinery related selection criteria into poplar tree breeding
programs. More specifically, development of dedicated bioenergy
poplar for future biorefineries requires an understanding of the genetic
architecture (extent of genetic variation and covariation, degree of
genetic control, underlying polymorphisms/alleles) of both biomass
production and biomass composition. This, in turn, accelerates the
selection or development of new clones that produce high biomass
yields, which are more amenable to bioconversion.

A recent approach to dissect the genetic architecture of “hard-to-
measure” complex traits, such as lignocellulosic biomass quality, is to
combine high-throughput phenotyping and genomics (Yang et al.,
2014). The discovery and analysis of genetic information have been
facilitated by the advances in high-throughput sequencing and geno-
typing platforms together with the availability of reference genome
sequences for model forest tree species (Neale and Kremer, 2011).
However, high-throughput phenotyping is lagging behind genomics
(Araus and Cairns, 2014). Standard methods, such as wet chemistry,
used for assessing the chemical composition of wood are costly and low-
throughput, which limit their use for assaying of large number of
samples as required in genetic studies and breeding programs. As a
consequence, the genetic analysis and genetic improvement of cell wall
composition may be hindered.

Near-infrared (NIR) spectroscopy is a high-throughput technology
that can be applied towards the rapid characterization of a large
number of lignocellulosic biomass samples with minimal cost. It is an
indirect method based on multivariate statistical analysis to establish
relationship between NIR absorbance spectra and reference values of
properties of interest using a representative sample set. NIR spectro-
scopy has been successfully used to predict wood chemical traits in
many forest tree species (Tsuchikawa and Kobori, 2015), including
Populus (Robinson and Mansfield, 2009; Zhang et al., 2014; Zhou et al.,
2011), Eucalyptus (Alves et al., 2012, 2011; Baillères et al., 2002; Poke
and Raymond, 2006; Raymond and Schimleck, 2002), and Pinus (Alves
et al., 2006; Jiang et al., 2014; Schwanninger et al., 2011a,b;
Schwanninger and Hinterstoisser, 2011). Indeed, some studies have
utilized NIR predictions for estimating genetic parameters of wood
properties, mainly in Pinus (Da Silva Perez et al., 2007; Gaspar et al.,
2011; Isik et al., 2011) and Eucalyptus (Costa e Silva et al., 2008;

Hamilton et al., 2009; Kube et al., 2001; Poke et al., 2006; Raymond
et al., 2001; Raymond and Schimleck, 2002; Schimleck et al., 2004;
Stackpole et al., 2011, 2010).

To our knowledge, the evaluation of calibration models covering
standing genetic variation available in natural and breeding popula-
tions of poplar is limited. NIR calibration is useful in genetic studies and
selection/breeding activities because such applications require assess-
ment of phenotypes in a large number of samples collected in multi-site
environments. In this context, development of calibrations mainly
depends on the range of variation of the traits of interest within and
across environments. For poplars, this range may be defined not only by
the genetic composition of the study population but also by the
environmental conditions of the plantation site, short rotation coppice
(SRC) management and the age of the tree at sampling time. The
purpose of this study was to develop NIR calibration models to predict
wood chemical properties, with the aim of applying the predictions to
evaluate their genetic variability in natural populations of European
black poplar covering the range of the species in Western Europe. Also,
the resulting calibrations could be used for rapid screening of elite P.
nigra clones from natural populations to be used in breeding programs.
More specifically, this paper addresses the following objectives: (1) to
develop and evaluate calibrations for predicting phenotypes of wood
chemical traits in a large sample size (n = 5799) based on NIR spectra,
(2) to estimate genetic variation in wood chemical properties of young
trees and the degree of their genetic control, and (3) to quantify the
magnitude and investigate the nature of genotype × environment
(G × E) interaction of the same traits measured across coppice rota-
tions as well as across sites.

2. Materials and methods

2.1. Wood samples and sample preparation

Clonally replicated trials of a P. nigra association population were
established in 2008 at two contrasting sites located in central France
(Orléans, ORL) and northern Italy (Savigliano, SAV) under a SRC
system. At each site, a randomized complete block design (RCBD)
was used, with a single tree per block and six replicates per genotype.
The P. nigra population assayed in this study represent the natural range
of the species in Western Europe, as it was composed of a diverse set of
1160 cloned genotypes (hereafter, each cloned genotype referred to as
genotype) sampled in 14 natural metapopulations across 11 river
catchments of four European countries (Table 1). More details concern-
ing the experimental design, site characteristics (soil, climate) and
plantation management practices can be found in Guet et al. (2015).

For the analysis of wood chemical properties, a total of 5799 wood
samples were taken at 1 m above the ground from 2-yr-old trees in three
different harvests (rotations/sites): (i) 289 genotypes in 3 blocks resulting in
795 samples harvested in ORL in March 2010 (end of first coppice cycle,
2008–2009) (hereafter referred to as ORL2010); (ii) 1066 genotypes in 3
blocks resulting in 2805 samples harvested in ORL in February 2012 (end of
second coppice cycle, 2010–2011) (hereafter referred to as ORL2012); and
(iii) 777 genotypes in 3 blocks resulting in 2199 samples harvested in SAV
in January 2011(end of second coppice cycle, 2009–2010) (hereafter
referred to as SAV2011). Circumference at 1 m was measured on all trees
of the two sites just before harvest. For each harvest, the final number of
biological replicates per genotype ranged between 2 and 3 because of
mortality. The samples collected in ORL in 2010 and 2012 have been
harvested during two successive 2-yr rotations of the same stool. The wood
samples were oven dried at 30 °C for several days until a constant weight
was reached, shredded into small pieces with a big cutter and milled using
RETSCH SM 2000 cutting mills (SM2000, Retsch, Haan, Germany) to pass
through a 1 mm metal sieve in order to get biomass powders onto which
NIR spectra were collected. The wood samples were not debarked and both
NIR measurements and biochemical analysis were made on non-debarked
wood samples.
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2.2. NIR spectra collection, pretreatment and selection of reference samples

Once established, NIR calibration models can be an inexpensive and
high-throughput method for accurate estimation of wood chemical
properties. However, their initial development involves several steps,
including spectral data collection, spectral data pretreatment, selection
and analysis of reference samples, application of a multivariate
calibration method, model selection and model validation. The NIR
spectra of 5799 wood powder samples were measured with a spectro-
meter Spectrum 400 (Perkin Elmer, Waltham, MA, USA) over 45 days
between the end of April 2015 and the beginning of July 2015. Prior to
analysis, samples were stabilized in a climatized chamber (20%RH) at
24 °C for a minimum of 1 day. Samples in quartz cups were placed in a
rotating device above the integration sphere window and spectra
acquired in a temperature controlled room (24 °C). All measurements
were done in diffuse-reflectance mode and the obtained spectra were
computed as Log (1/R) and expressed in absorbance. The scanning
range for all samples was from 10,000 cm−1 to 4000 cm−1

(1000–2500 nm) with a spectral resolution of 8 cm−1 and a zero filling
factor of 4 resulting in a number of data points at every 2 cm−1. For
each wood sample, 64 scans were acquired and averaged. Background
was carried out regularly using Spectralon® as reference.

Undesirable sources that likely affect the quality of spectral data
include sample moisture content, particle size, temperature and hu-
midity of the spectrometer laboratory, batch effects (e.g., date of
spectral data collection) and so on. Before applying multivariate
analysis methods such as partial least squares (PLS) regression, it is
important to reduce or remove undesired variations in the recorded
sample spectra to reduce noise and enhance calibrations. For this
reason, several common spectral pretreatment techniques (normal-
ization, detrend, first and second derivatives on raw or normalized
spectra) were applied to the raw spectra for comparisons or to find the
best combination. Absorption spectra were first restricted to the
wavenumber range of 8000–4000 cm−1 since spectra recorded within
10,000–8000 cm−1 has mainly noise. For illustration, plot of raw

spectra of wood powder samples from ORL2012 harvest is shown in
Fig. S1. The spectra pretreatment was performed with R software (R
Core Team, 2015). The R packages prospectr (Stevens and Ramirez-
Lopez, 2013) and signal (signal developers, 2013) were used to perform
detrend and derivations, respectively. Since spectral data pretreatment
can improve exploratory analysis, principal component analysis (PCA)
was performed on the resulting 7 spectra modalities (raw, pretreated)
to explore the data for potential outlying spectra and clustering of the
samples according to genotypes, date of spectral data collection,
temperature and humidity of the spectrometer laboratory and operators
(not shown). In this initial exploratory analysis, no samples were
removed as outliers.

Careful selection of representative samples (reference samples) is a
prerequisite to develop NIR spectra based calibrations. We chose to
select 120 reference samples based on spectral data because the NIR
spectra basically contains information about several properties of a
wood sample for which the calibration is carried out. These samples
should therefore be selected in order to represent most of the spectral
variation of a large population of wood samples (n = 5799) collected
from a multi-environment experiment. Also, the reference samples
should best represent the sources of variation likely to occur in future
samples such as plantation site, coppice rotation and genotype, which
could enhance the robustness of the resulting calibrations. To do so, we
first calculated the mean spectrum for each genotype within harvest.
PCA was then performed on the resulting genotypic spectra across all
harvests. The results obtained provided two types of information. First,
compared to other spectra modalities, first derivative spectra (first
derivative on raw spectra) showed a more uniform distribution of the
genotypic spectra on the first 2 PCs (Fig. S2) and were thus chosen to be
used for the selection of reference samples. Second, the genotypic
spectra showed clear clusters in the space of the first 2 PCs according to
harvests (Fig. S2). We thus decided to select an equal number of
genotypes from each harvest to constitute the reference sample set.
Euclidean distances were computed between the genotypic spectra
within harvests. Subsequently, a representative subset of genotypes was

Table 1
Location, river management and number of studied genotypes in ORL and SAV for the 14 P. nigra metapopulations. Where metapopulations were represented by individual trees sampled
in different stands distributed along one river, a range of latitudes, longitudes and altitudes is given. Metapopulations were ordered by country according to the latitude of origin. Altitude
is expressed in metres a.s.l.

Country River
catchment

Metapopulation Latitude Longitude Altitude Cohortsa River
managementb

Number of studied genotypes

ORL SAV Common

France Adour Adour 42°53′N–43°23′N 0°02′W–00°56′W 52–902 Mature Partially regulated 62 52 49
Italy Basento Basento 40°24′N−40°38′N 15°56′E−16°39′E 37–286 Juvenile/

mature
Partially regulated 26 15 14

France Dranse Dranse 46°23′N 06°30′E 374 Juvenile/
mature

Dynamic 40 42 39

France Durance Durance 43°51′N 04°59′E 60 Juvenile/
mature

Partially regulated 14 8 1

Germany Kuhkopf Kuhkopf 49°49′N 08°30′E 91 Juvenile/
mature

Regulated 53 46 37

France Loire Loire 47°00′N−47°51′N 00°44′W−02°58′E 29–154 Juvenile/
mature

Dynamic 215 197 165

Netherlands NL NL 50°31′N−52°37′N 03°35′E−06°23′E 0−287 Mature Regulated 47 42 37
France Nohèdes Nohede 42°37′N 02°17′E 820 Mature Dynamic 43 38 35
Italy Paglia Paglia 42°45′N–42°52′N 11°45′E–11° 55′E 235–358 Juvenile/

mature
Dynamic 47 42 41

France Drôme Ramieres 44°41′N–44°45′N 04°55′E–05°24′E 145 Juvenile/
mature

Dynamic 178 99 91

France Rhin Rhin 48°16′N–48°37′N 07°41′E–07°49′E 135–160 Mature Regulated 66 50 48
Italy Stura Stura 44°17′N−44°23′N 06°56′E−07°12′E 825–1699 Juvenile/

mature
Dynamic 25 29 25

Italy Ticino Ticino 45°12′N–45°16′N 08°59′E–09°04′E 60–70 Juvenile/
mature

Dynamic 103 78 62

France Allier ValAllier 46°24′N 03°19′E 220 Juvenile/
mature

Dynamic 147 39 39

a Juvenile trees were defined as non-reproductive trees.
b Regulated if water flows have been regulated to facilitate navigation or to prevent floods; dynamic if water flows are not regulated and allow some flooding events.
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selected within each harvest following the Kennard-Stone algorithm
which allows to select samples with a uniform distribution over the
predictor space (Kennard and Stone, 1969). A total of 45 genotypes
(i.e., 14–16 genotypes per harvest) were selected in order to reach a
total of 120 samples when considering the 2–3 biological replicates of
each genotype in each harvest.

2.3. Wood chemical analysis of reference samples

This section is described in detail in Supplementary Information
Text (SI Text). The 120 selected samples were analyzed for chemical
composition following standard analytical methods (wet chemical
analysis, HPLC, analytical pyrolysis) to generate reference values used
to develop dedicated calibrations to predict wood chemical traits in all
the samples (n = 5799). Wood chemical traits included: (i) extractives
content; (ii) lignin content (Klason lignin, acid-soluble lignin); and (iii)
the content of the two most abundant cell wall sugars (glucose, xylose).
Analytical pyrolysis was used to assess lignin composition [relative
proportion of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) units]
according to Rodrigues et al. (2001, 1999) and Alves et al. (2006).
Except for analytical pyrolysis, at least two technical replicates were
performed per sample. For analytical pyrolysis, technical replicates
were done only for a few samples to estimate the root mean square
error (RMSE) of the method for further comparison with the RMSE of
the corresponding NIR calibration.

2.4. Development of NIR calibration models using partial least squares
(PLS) regression

R software was used for PLS regression model development (R Core
Team, 2015). To perform the calibrations, we used the R package pls
(Mevik and Wehrens, 2007). Various home-made functions were also
used to carry out the calibrations with PLS regression in a cross-
validation scheme with an optional detection of potential outlier
observations. Moreover, the function “carspls_LOO” was used for
automatically selecting a subset of wavenumbers to be included in
the PLS regression as proposed by Li et al. (2009). The selection is based
on an iterative exclusion of wavenumbers according to their weight in a
PLS regression and following an exponential decreasing function.
Consequently, the selected wavenumbers are specific to the trait being
calibrated. More details about this method are given in Li et al. (2009).

Prior to a final calibration step, we detected potential outlying
observations within the 120 reference samples using either box-and-
whisker plots or P-value thresholds of z-tests on the cross-validation
residuals of PLS calibrations. The final calibration step involved
splitting of the 120 reference samples into a calibration set (n = 99,
∼5/6) and a validation set (n = 21, ∼1/6) using Kennard-Stone
algorithm (Kennard and Stone, 1969) per harvest on first derivative
spectra. Next, outliers detected in the previous step were removed from
both calibration and validation data sets. The resulting calibration set
was then used to build the model with a leave-one-out (LOO) cross-
validation with or without automatic wavenumber selection using the
CARS algorithm (Li et al., 2009). The optimal number of components in
the PLS regression model was optimized within the cross-validation
using Wold's criterion (Li et al., 2002), which was set up at 1. The
following statistics were calculated for each model both within the
training (cross-validation) and validation sets:

- The coefficient of determination defined as ( )R = 1 − RSS
TSS

2 , where
RSS is the residual sum of squares (sum of squares of differences
between observed and predicted values), and TSS is the total sum of
squares (sum of squares of differences between observations and
their mean);

- The root mean square error defined as ( )RMSE = RSS
n , where RSS

is defined as above and n is the number of observations;

- The ratio of prediction to standard deviation defined as
RPD = SD

RMSE, where SD is the standard deviation of the observa-
tions, and RMSE is defined as above.

The models with best statistics were selected and, when validated,
used to predict all samples (n = 5799) included in the study.

2.5. Estimation of genetic parameters for NIR-predicted wood chemical
traits

The NIR-predicted wood chemical traits were all approximately
normally distributed and data transformations were not considered
necessary prior to genetic analysis. In order to estimate variance
components of traits, linear mixed models (Henderson, 1984) involving
spatial effects were fitted using breedR package (Muñoz and Sanchez,
2015) in software R for the analysis of all predicted traits within
harvests. Both block and spatial effects account for the environmental
variation within the experimental field. Block effects account for global
field variations, while spatial effects capture the environmental hetero-
geneity not accounted by the block effects because of the relatively
large size of each block. Furthermore, spectra data have been collected
according to the ordered field positions of the trees. So spectra
collection date is likely to contribute to the so called spatial variation
revealed by the variograms. Accounting for the date effect could help to
interpret the spatial effects, if necessary.

For each of the traits, the following mixed model was fitted:

y Xβ Zu Rb Nd e= + + + + (1)

where y is a vector of individual tree data for a predicted wood
chemical trait, β is a vector of fixed effects (over all mean or intercept),
u is a vector of random effects of genotypes (genetic effects of genotypes
or genotypic values), b is a vector of random effects of blocks, d is a
vector of random effects of the dates of NIR spectra collection and e is a
vector of residuals. X, Z, R, and N are known incidence matrices relating
the observations to the fixed effects in vector β and random effects in
vectors u, b, and d, respectively, assuming u N σ I∼ (0, )G

2 , b N σ I∼ (0, )b
2 ,

d N σ I∼ (0, )d
2 , e N R∼ (0, ), where σG

2is the genotypic variance, σb
2 is the

block variance, σd
2 is the date variance, R is the residual covariance

matrix, and I is an identity matrix. A spatial residual structure was
implemented in order to decompose e into spatially dependent (ξ) and
spatially independent (η) residuals (Dutkowski et al., 2002), leading to
the following decomposition of R:

R σ AR ρ AR ρ σ I= [ 1( ) ⊗ 1( )] +ξ col row η
2 2 (2)

where σξ
2 is the spatially dependent residual variance, ση

2 is the spatially
independent residual variance, I is an identity matrix and AR ρ1( ) is a
first-order autoregressive correlation matrix.

The mixed model described in model 1 was compared with a model
without decomposition of the residual term into spatially dependent
and independent effects based on the Akaike information criterion
(AIC) and was found to have a lower AIC (i.e., better performance) in all
data sets (i.e., ORL2012 and SAV2011 harvests) for all predicted
phenotypes. However, spatial trends were not modelled for ORL2010
harvest because the number of genotypes per harvested block was not
large enough to capture the within block spatial variation. Moreover,
the level of sampling within each block induced heterogeneity in the
spatial distribution of the corresponding samples, so estimation of
spatial effects over the trial could be biased.

Within each harvest and for each phenotype, reduced models
(dropping block or spectra collection date effect) were also fitted and
compared to the corresponding full models based on the AIC. Finally,
the model yielding the best fit (lowest AIC) was selected for variance
component estimation and to adjust the phenotype for non-genetic
random effects (block, date, spatially dependent residuals).

Variance components from the selected mixed model were further
used to estimate broad-sense heritabilities of the NIR-predicted wood
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chemical traits within harvests. Individual tree broad-sense heritability
(Hi

2) was calculated using the following equation:

H σ
σ σ= ( + )i G

G e
2 2

2 2 (3)

where σG
2 and σe

2 are the genotypic and residual variance components,
respectively. Clonal mean broad-sense heritability or clonal repeatabil-
ity (Hc

2) was calculated as:

( )H σ
σ= +c G

G
σ

r
2 2

2 e
2

(4)

where r is the average number of replicates per genotype for a trait
under consideration for a given harvest. Standard errors for heritability
were calculated using the Delta method (Lynch and Walsh, 1998).
Standard errors were multiplied by 1.96 to construct the 95% con-
fidence interval (CI) for heritability.

Finally, we used genotypes shared between coppice rotations or
sites for fair comparisons of genetic parameter estimates and for
assessing stability of genetic parameters between rotations as well as
between sites or characterizing G × E interaction. A set of 289
genotypes were shared between rotations within Orleans’ trial
(ORL2010 vs ORL2012 harvests), while 683 genotypes were shared
between sites (ORL2012 vs SAV2011 harvests).

For analysis within harvests based on shared genotypes, the
following model was fit:

y Xβ Zu e= + + (5)

Where y is a vector of individual tree data for a predicted wood
chemical trait that was adjusted for block, date and spatially dependent
effects with the previously selected mixed model (model 1) and the
remaining parameters were assigned as described in model 1.

In order to test and evaluate the extent of G × E interaction across
rotations and sites, the following G × E mixed model was fitted:

y Xβ Zu Mp e= + + + (6)

where y is a vector of individual tree data for a predicted wood
chemical trait that was adjusted for block, date and spatially dependent
effects with model 1, β is a vector of fixed effects (over all mean and
rotations or sites), p is a vector of random effects of G × E interaction.
X, Z and M are incidence matrices relating the observations to the fixed
effects in vector β and random effects in vectors u and p, respectively,
assuming, p N σ I∼ (0, )G E×

2 , where σG E×
2 is the G × E interaction var-

iance. The remaining parameters were assigned as described in model
1. Likelihood ratio tests (LRT) between the full model and a reduced
model without G × E interaction effect were performed to test the
significance of G × E interaction effect. Correlations between adjusted
genotype means were also estimated using the Spearman’s rank
correlation to further characterize the stability of genotype means
between rotations or sites. Finally, when the extent of G × E variance
was found to be more than 50% of the genotypic variance (Shelbourne,
1972), a further decomposition of the G × E interaction was carried out
following method 1 of Muir et al. (1992). Such decomposition enables
to partition the G × E sum of squares into scaling effect and genotype
rank change.

3. Results

3.1. Variability in wood chemical properties of reference samples

The descriptive statistics for traits analyzed in the laboratory of the
120 reference samples are presented in Table 2. The range of variation
in most of the traits analyzed was considerable, and provided the
potential to develop reliable calibrations. For example, Klason lignin
content ranged from 16.8% to 26.5%, whereas glucose content ranged
from 30.6% to 50.3%. Overall, the range of wood chemical traits within
our reference data set was 5–21 times the RMSE of the standard

methods, making this reference data set acceptable for building near-
infrared multivariate calibration models (Table 2).

3.2. Calibration, validation and prediction

The absorption spectra modalities (with or without pretreatment)
and reference values of the reference samples were used to develop NIR
calibration models at a global scale for a majority of the traits, except
for lignin contents, where site specific models showed higher predictive
performance than the global ones (Table 3). The reference values in the
calibration and validation data sets for the wood chemical traits of
black poplar were comparable (i.e., had similar means and ranges),
which means that reliable models can be developed and effectively
verified (Fig. S3).

Summary statistics that demonstrate the performance of the models
in calibration and validation data sets are reported in Table 3 and plots
of the predicted versus measured component values for selected
calibrations are shown in Fig. S4. Pretreated spectral data provided
better calibrations than raw spectra. Automatic wavenumber selection
improved model performance, for some of the traits, compared with full
range.

Global calibration models developed for the prediction of H-lignin,
lignin H/G and S/G ratios, xylose/glucose, C5/C6 and extractives were
good, with coefficients of determination (R2) ranging from 0.75–0.91
and 0.72–0.83 in calibration and validation data sets, respectively
(Table 3, Fig. S4). The R2 values for calibration and validation sets of
glucose were 0.76 and 0.64, respectively. The models for G-lignin and
S-lignin had moderate performance in cross-validation (R2

cv = 0.68 and
0.64, respectively), while the model for S-lignin showed a higher
accuracy of prediction (R2

val = 0.77). The model for xylose showed
inadequate fit in the calibration data set (R2

cv = 0.48) as well as a poor
prediction performance in the validation data set (R2

val = 0.29).
On the other hand, global models for lignin content (Klason lignin,

Py-lignin and acid-soluble lignin) were very specific (i.e., they were
good in predicting samples included in the models but very poor in
predicting samples of an independent validation set) (Table 3). There-
fore, we followed the site specific approach to model these character-
istics (Table 3, Fig. S4). For Klason lignin, the model developed for
Orleans site (R2

cv = 0.78, R2
val = 0.60) had a better fit, whereas good

models for Py-lignin and acid-soluble lignin were obtained at Savigliano
(R2

cv = 0.79, R2
val = 0.73 and R2

cv = 0.77, R2
val = 0.79, respec-

tively).
With the exception of Klason lignin, Py-lignin, acid-soluble lignin

and xylose global models, the remaining global models described in
Table 3 and Fig. S4 were used to predict wood chemical properties for

Table 2
Descriptive statistics for lignin monomers (H, G, S), lignin composition (H/G, S/G), lignin
content (Klason lignin, Py-lignin, acid-soluble lignin), cell wall sugars (xylose, glucose,
xylose/glucose, C5/C6) and extractives analyzed by standard laboratory methods for 120
reference wood samples.

Trait Unit RMSE Min. Max. Mean

H-lignin % Lignin 0.60 2.80 11.0 5.00
G-lignin % Lignin 0.84 41.20 53.10 46.40
S-lignin % Lignin 1.01 39.50 54.90 48.60
H/G fold 0.01 0.05 0.25 0.11
S/G fold 0.03 0.86 1.34 1.06
Klason lignin % CWR 1.61 16.80 26.5 21.50
Py-lignin % CWR 1.49 20.20 27.00 23.10
Acid-soluble lignin % CWR 0.32 4.60 7.00 6.10
Xylose % CWR 1.15 13.10 18.70 15.30
Glucose % CWR 1.87 30.60 50.30 40.40
Xylose/Glucose fold 0.03 0.29 0.48 0.38
C5/C6 % 1.14 17.9 29.30 23.90
Extractives % DW 0.54 6.20 17.70 10.40

DW: dry weight; CWR: cell wall residue (extractives-free dry weight); RMSE: root mean
square error of the standard methods for replicate analysis.
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the entire sample set (n = 5799) to study phenotypic variability,
degree of genetic control and G × E interaction. Klason lignin at
Orleans and Py-lignin and acid-soluble lignin at Savigliano were
predicted with the site specific models because of the poor prediction
performance of their corresponding global models. On the other hand,
Klason lignin at Savigliano and Py-lignin and acid-soluble lignin at
Orleans were not predicted since their corresponding site specific
models had poor performances, especially in validation sets. Xylose
was not predicted since the quality of the model was considered poor as
mentioned before.

Boxplots of the distributions of NIR-predicted wood chemical traits
(without adjustment for micro-environmental effects) are presented in
Fig. S5. The range of phenotypic variation in most predicted wood traits
was considerable. For example, the predicted Klason lignin content
ranged from 16.1% to 27.9%, whereas predicted glucose content
ranged between 30.2% and 49.7%. All the predicted values were in
line with the results obtained for the reference data set (i.e., they were
pretty much close to the limits or within the range of variation observed
for the reference data set) (Table 2). Moreover, based on comparisons of
the RMSE of the models (Table 3) to the RMSE of the standard methods
(Table 2), the uncertainties associated with the predictions can be
regarded as acceptable. It is worth mentioning, however, that the
predicted S/G values (0.69–1.43) didn’t fall within the range of values
reported for other populations of P. nigra (1.3–2.1) (Guerra et al., 2013)
and P. trichocarpa (1.5–2.4) (Guerra et al., 2016) despite variations of
almost the same magnitude.

3.3. Variance components and broad-sense heritability of wood chemical
traits within harvests

Due to some unbalance in genotype representation across harvests,
the genetic analysis of individual harvests using only the shared
genotypes was done to ensure fair comparisons of genetic parameters
for the same traits. Thus, a set of 289 genotypes were shared between
ORL2010 and ORL2012 harvests (i.e., between coppice rotations),
while 683 genotypes were shared between ORL2012 and SAV2011
harvests (i.e., between sites).

Based on analysis using 289 genotypes, high clonal repeatability

H( )c
2 values were found for lignin monomers (H, G, S) (0.74 ± 0.05 to

0.81 ± 0.04), lignin composition (H/G, S/G) (0.75 ± 0.05 to
0.81 ± 0.04), Klason lignin (0.75 ± 0.05 to 0.80 ± 0.04) and cell
wall sugars (0.72 ± 0.06 to 0.80 ± 0.04) in the 2 rotations (Fig. 1,
Table S1). The exception was extractives content, for which the Hc

2

values were moderate to high (0.57 ± 0.09 to 0.72 ± 0.06). Using
683 genotypes, high Hc

2 values were found for all traits except
extractives, namely, lignin monomers (0.74 ± 0.04 to 0.88 ± 0.02),
lignin composition (0.77 ± 0.03 to 0.89 ± 0.01) and cell wall sugars
(0.70 ± 0.04 to 0.81 ± 0.02) in the two sites (Fig. 2, Table S2). For
extractives, the Hc

2 values were moderately high (0.62 ± 0.05 to
0.70 ± 0.04). At Savigliano, where trees grew more rapidly, the
genetic control over all the chemical traits was generally stronger with
the exception of C5/C6. For example, Hc

2 for lignin S/G ratio was higher
(0.89 ± 0.01) at Savigliano compared to Hc

2 = 0.77 ± 0.03 at Or-
leans. These differences in heritability of the same traits between the
two sites can be explained by scale effects (i.e., both increased
expression of genetic variation and decreased residual variation at
Savigliano as compared to Orleans) (Table S2). In comparison to site,
rotation effects on Hc

2 were rather low for all traits with the exception of
extractives, suggesting differences in magnitude of G × E interaction
between rotations and sites. For extractives content, Hc

2 varied more
between rotations than between sites. Next, in order to reflect the
genetic variation in wood traits that could be present in the entire
population, we repeated the genetic analysis using all genotypes
available in each harvest.

To estimate genetic parameters for the NIR-predicted wood chemi-
cal traits for each single harvest using all genotypes available, data were
analyzed with a full mixed model accounting for spatial effect.

Overall, the clonal repeatability estimates were highly comparable
between the two analyses, i.e., all genotypes versus shared genotypes
(Figs. 1–2, Table S1 and S3). We conclude that the genotypes shared
between the harvests were adequate enough to capture the genetic
variation existing in the entire population. This is interesting because
we would not miss important information when analysing the G × E
interaction both across rotations and sites using the shared genotypes.

Table 3
NIR calibration models (leave-one-out cross-validation) and validation statistics for wood chemical properties evaluated on 120 reference samples. For trait abbreviations see the caption
of Table 2.

Trait Model type Calibration set (n =∼5/6) Validation set (n = ∼1/6)

nblambda Pretreatment nbcomp R2
cv RMSEcv RPDcv nobs nb. outliers R2

val RMSEval RPDval nobs nb. outliers

H-lignin Global Full range der2 9 0.75 0.80 2.0 91 8 0.80 0.89 2.3 21 0
G-lignin Global 29 der2 5 0.68 1.26 1.8 94 5 0.51 1.33 1.5 20 1
S-lignin Global Full range norm-der2 13 0.64 1.25 1.7 90 9 0.77 1.02 2.2 20 1
H/G Global 652 der2 8 0.82 0.02 2.4 92 7 0.83 0.02 2.5 19 2
S/G Global 947 norm-der2 12 0.84 0.03 2.5 91 8 0.72 0.04 2.0 21 0
Klason lignin Global Full range der1 5 0.61 1.17 1.6 91 8 0.27 1.44 1.2 20 1

Site: ORL Full range dt 6 0.78 0.94 2.2 56 10 0.60 1.31 1.6 13 1
Site: SAV Full range der2 5 0.25 1.43 1.2 33 0 −4.33 1.22 0.5 7 0

Py-lignin Global Full range norm-der2 7 0.75 0.59 2.0 97 2 −0.18 0.78 1.0 21 0
Site: ORL Full range norm-der2 7 0.72 0.65 1.9 65 1 −1.43 0.87 0.7 14 0
Site: SAV Full range der1 8 0.79 0.39 2.2 26 7 0.73 0.35 2.1 6 1

Acid-soluble lignin Global Full range der2 7 0.61 0.23 1.6 92 7 0.35 0.29 1.3 18 3
Site: ORL Full range norm-der2 6 0.49 0.25 1.4 61 5 0.21 0.29 1.2 13 1
Site: SAV Full range norm-der2 8 0.77 0.16 2.1 30 3 0.79 0.15 2.4 6 1

Xylose Global Full range der1 6 0.48 0.73 1.4 88 11 0.29 0.85 1.2 21 0
Glucose Global 46 norm-der1 6 0.76 1.49 2.0 94 5 0.64 1.25 1.7 18 3
Xylose/Glucose Global 28 norm 8 0.79 0.02 2.2 90 9 0.75 0.02 2.0 20 1
C5/C6 Global 129 der2 6 0.85 0.89 2.6 91 8 0.81 1.08 2.4 21 0
Extractives Global 326 der1 9 0.91 0.74 3.3 91 8 0.74 1.03 2.0 20 1

nblambda: number of selected wavenumbers; nbcomp: number of PLS components; R2
cv: coefficient of determination of cross-validation; RMSEcv: root mean square error of cross-

validation; RPDcv: ratio of performance to deviation of cross-validation; nobs: number of samples statistically analyzed; R2
val: coefficient of determination of validation; RMSEval: root

mean square error of validation; RPDval: ratio of performance to deviation of validation; norm: normalized spectra; dt: detrending spectra; der1: first derivative spectra; der2: second
derivative spectra; norm-der1: first derivative on normalized spectra; norm-der2: second derivative on normalized spectra; Full range spectrum: 8000–4000 cm−1.
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3.4. Genotype × environment (G × E) interaction effect on wood chemical
traits

To assess the stability of genetic parameters or characterize G × E
interaction for the NIR-predicted wood chemical traits, genotypes
shared between rotations (ORL2010 vs ORL2012 harvests) or between
sites (ORL2012 vs SAV2011 harvests) were used. Two strategies were
adopted to assess G × E interaction including estimation of variance
components and correlation between environments.

Combined mixed model analysis of variance of 289 genotypes

evaluated across rotations at Orleans showed that the G × E interaction
effect was significant (LRT P-values < 0.001, 0.01) for all traits, except
for H-lignin and lignin H/G ratio (Table S4). However, the magnitude of
the G × E interaction variance was rather low, compared to the
genotypic variance component for all traits. The G × E interaction
variance component explained only 1–18% of the total phenotypic
variance, whereas the genotype main effect accounted for 30–53%
(Fig. 3, Table S4). Based on the 683 genotypes tested across sites, for all
traits highly significant (LRT P-value < 0.001) G × E interaction was
found and the GxE variance reached more than 50% of the correspond-

Fig. 1. Estimated clonal mean broad-sense heritability (clonal repeatability) H( )c
2 with error bars corresponding to the 95% confidence intervals for NIR-predicted wood chemical traits

evaluated over two successive 2-yr rotations (ORL2010 and ORL2012) in a clonal trial at Orleans (France). For trait abbreviations see the caption of Table 2.

Fig. 2. Estimated clonal mean broad-sense heritability (clonal repeatability) H( )c
2 with error bars corresponding to the 95% confidence intervals for NIR-predicted wood chemical traits

evaluated at two contrasting sites (Orleans, France: ORL2012; Savigliano, Italy: SAV2011). Trees were grown over two successive 2-yr rotations at Orleans (2008–2009, 2010–2011) and
1-yr and 2-yr rotations at Savigliano (2008, 2009–2010). Results are based on the data from the second rotations at the two sites. For trait abbreviations see the caption of Table 2.
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ing genetic variance (Fig. 4, Table S5). Importantly, for glucose and
extractives, the G × E interaction variance component (27% and 26%,
respectively) was even larger than the genetic variance component
(24% and 14%, respectively) and this was somewhat mirrored in the
relative values of the clonal repeatability, especially for extractives.
Compared to extractives, glucose content is a key wood chemical trait
in term of bioethanol production. During bioethanol production,
glucose is released from cellulose in the plant cell walls via enzymatic
hydrolysis of lignocellulosic biomass and could then be converted into

bioethanol via fermentation. To assess if the observed G × E interaction
for glucose in particular and all biochemical traits in general would
have practical implications for poplar tree breeding for bioethanol
production, it is noteworthy to further decompose the corresponding
interaction variance components. Because the G × E interaction was in
general more evident over sites than over rotations for all traits, we
sought to zoom into the nature of the G × E interaction across sites.

Thus, G × E interaction was dissected according to the method 1
described by Muir et al. (1992). Results of the partitioning of the G × E

Fig. 3. Decomposition of total phenotypic variance for NIR-predicted wood chemical traits evaluated over two successive 2-yr rotations (ORL2010 and ORL2012) in a clonal trial at
Orleans (France). Stacked barplot of the percentage of the total phenotypic variance explained by the genotype main effect σ( )G

2 , genotype × environment (G × E) interaction effect
σ( )G E×

2 and residual effect σ( )e
2 variance components for 10 wood chemical traits and using 289 shared genotypes. For trait abbreviations see the caption of Table 2.

Fig. 4. Decomposition of total phenotypic variance for NIR-predicted wood chemical traits evaluated at two contrasting sites (ORL2012: Orleans, France; SAV2011: Savigliano, Italy).
Stacked barplot of the percentage of the total phenotypic variance explained by the genotype main effect σ( )G

2 , genotype × environment (G × E) interaction effect σ( )G E×
2 and residual

effect σ( )e
2 variance components for 9 wood chemical traits and using 683 shared genotypes. For trait abbreviations see the caption of Table 2.
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interaction sum of squares into sources due to scaling effects (hetero-
geneity of variances) and re-ranking indicated that the G × E interac-
tion for all traits was dominated by changes in genotype ranking over
the two sites (Table 4). Nevertheless, it appeared that only 9–13% of the
genotypes, which correspond to the most interactive ones, were found
to explain 50% of the G × E interaction sum of squares. Whereas the
impact of G × E interaction seemed higher for glucose and extractives
on the basis of the relative magnitude of their variance components, the
proportion of interactive genotypes were found to be quite similar to
those for other traits, suggesting less practical importance of the
observed interaction. Extractives had some level of scale effect
(14.9%) and still high re-ranking (85.1%), whereas glucose had little
or no scale effect (0.23%) and high re-ranking (99.77%) (Table 4).
Similarly, the genetic variances, expressed in terms of genetic standard
deviation σ( )G , were not similar between the two sites for extractives,
with higher variation at Orleans (i.e, some level of scale effect),
whereas, for glucose, the genetic variances were more homogeneous
between Orleans and Savigliano (1.24 and 1.26, respectively) (i.e., little
or no scale effect). Although H-lignin and extractives had similar
patterns of partitioning of G × E interaction sum of squares, the
Spearman’s rank correlation was much weaker for extractives, which
was consistent with the relatively stronger G × E effect on this
particular trait, as shown by the ratio of σG

2 to σG E×
2 (Table 4).

Furthermore, we assessed the stability of genotype ranking across
rotations or sites on a genotypic mean basis for each wood trait using
Spearman’s rank correlation coefficients r( )s . Thus, r( )s between the two
rotations were stronger than 0.60 r( = 0.64 − 0.71)s for all traits except
C5/C6, glucose and extractives (Table S4), which was consistent with
the relatively low level of G × E interaction observed across rotations
for most traits (1–9%). For C5/C6, glucose and extractives, the
correlations were in the range of 0.48–0.50, which was consistent with
the relatively higher proportion of G × E interaction variances for these
three traits (12–18%) (Fig. 3, Table S4). By contrast, the Spearman’s
rank correlations of genotypic means between the two sites were lower
than 0.60 for most of the traits r( = 0.45 − 0.56)s , and has turned out to
be much weaker for extractives r( = 0.23)s and glucose r( = 0.34)s

(Table 4), which corroborated the relatively high level of G × E
interaction observed across sites compared to across rotations (Fig. 4,
Table S5).

4. Discussion

A study of this scale would not have been possible using the
standard method of wood compositional analysis because of the high
cost and time required. For example, to analyze the 120 reference
samples in two technical replicates using the wet chemistry method, it
took about two months. It means that, it would have taken around 8
years to analyze about the 6000 samples included in our study. A way

to circumvent such technical limitation is to use an attractive technique
that combines NIR spectroscopy with multivariate statistical analysis.
NIR spectroscopy is an inexpensive and high-throughput technique for
phenotyping large-scale wood samples required for the genetic analysis
of biofuel related traits and, consequently, it can provide the opportu-
nity to select or develop biofuel-type poplar clones. Nevertheless, NIR
spectroscopy is an indirect method which is reliable only if calibration
models are provided. In this study, chemical composition data from
standard methods and NIR spectra of reference samples were used to
develop and validate calibrations taking into consideration the pheno-
typic variation induced by multi-environment evaluation. The models
based on a 120-samples reference set were then used to predict the
composition of the 5799 black poplar samples covering the range of the
species in Western Europe. Using NIR predictions, we evaluated their
genetic variability and the extent of G × E interaction across coppice
rotations and sites. To our knowledge, this is the first work to evaluate
large-scale clonal trials of P. nigra for wood chemical traits using an
indirect method of measurement.

4.1. Calibration reliability

When global calibration models developed for the prediction of 6
wood chemical traits (H-lignin, S/G, H/G, xylose/glucose, C5/C6,
extractives) in samples of European black poplar were tested on an
independent validation data set, they gave good fits, suggesting their
potential use in genetic analysis of large data sets or for ranking of
genotypes with respect to their predicted phenotypic performances in
initial selection steps in breeding programs. RPD values of ∼1.5
indicate that the models are acceptable as initial screening tools,
whereas RPD greater than 2.5 suggest that the models are good for
screening candidates in breeding programs (Yeh et al., 2005). Although
site effects were apparent on some traits such as xylose/glucose ratio,
we were able to develop non-site specific calibrations for such para-
meters.

By contrast, global models for lignin content (Klason lignin, Py-
lignin, acid-soluble lignin) showed clearly poorer performance in the
validation set than in the calibration set. There is no obvious explana-
tion for these apparent differences in global model performance
between calibration and validation sets. We further examined if model
fit was better for site specific calibration than global ones for lignin
content and found that the Klason lignin model had a good fit at
Orleans, while Py-lignin and acid-soluble lignin models had good fits at
Savigliano, which does explain why we could not have global models
for these characteristics.

Only a few studies have investigated the efficiency of NIR calibra-
tion models for prediction of poplar wood composition and these
focused on hybrid poplars instead of natural populations. Robinson
and Mansfield (2009) used NIR spectra of 267 wild and transgenic

Table 4
Partitioning of genotype × environment (G × E) interaction sum of squares (SS G × E) for NIR-predicted wood chemical traits evaluated at two contrasting sites and using 683 shared
genotypes according to Method 1 of Muir et al. (1992). Proportion of genotypes explaining 50% of the SS G × E was calculated according to their relative ecovalence (Lin et al., 1986).
For trait abbreviations see the caption of Table 2.

Trait σGORL σG SAV σG σG E
2

×
2 rs % SS G × E Proportion of genotypes explaining 50% of G×E SS

Scale effect Re-ranking

H-lignin 0.52 0.79 1.66 0.56 14.61 85.39 12.30
G-lignin 0.80 0.77 1.49 0.46 1.46 98.54 10.25
S-lignin 1.29 1.83 1.50 0.51 6.53 93.47 10.69
H/G 0.01 0.02 1.57 0.53 11.33 88.67 13.47
S/G 0.05 0.07 1.59 0.54 2.52 97.48 9.22
Glucose 1.24 1.26 0.91 0.34 0.23 99.77 10.25
Xylose/Glucose 0.01 0.01 1.47 0.45 0.02 99.98 11.71
C5/C6 0.76 0.77 1.95 0.49 0.01 99.99 11.13
Extractives 1.06 0.68 0.54 0.23 14.92 85.08 10.69

rs: Spearman’s rank correlation coefficient.
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hybrid poplar samples coupled with a modified thioacidolysis protocol
for predicting lignin monomer proportions (S, G, and H). The authors
reported highly accurate calibrations with prediction R2 values of 0.96,
0.96, and 0.71 for S, G and H, respectively. More recently, Zhou et al.
(2011) used Fourier transform infrared spectroscopy (FTIR) and acetyl
bromide method to develop a calibration model for predicting lignin
content in hybrid poplar wood samples. They reported a strong
calibration with cross-validation R2 of 0.81 and prediction R2 of 0.88.
Our global model for H-lignin had higher prediction R2 than the local
model developed by Robinson and Mansfield (2009). However, we
found lower prediction R2 values for the predominant G and S lignin
monomers. Compared with the lignin model developed by Zhou et al.
(2011), our local models for Klason lignin, Py-lignin and acid-soluble
lignin had slightly lower R2 values. The differences between these
previous studies and our work may be largely related to differences in
study population and standard laboratory methods. However, in this
study spectra were recorded on non-debarked and non-extracted wood
samples because it is practically difficult to debark and extract a large
amount of samples (n = ∼6000). Although the presence of bark and
extractives may disturb the spectra, we still attained sufficiently
accurate models for a majority of the traits analyzed. Furthermore,
the R2 value may be misleading as it depends not only on the model
error but also on the range of variation of the trait of interest within or
across sites. For example, in this study the effect of site on the range of
variation of some of the traits analyzed was quite high (Fig. S5).
Consequently, different R2 values can be obtained for calibrations for
the same trait at the two sites while still having the same prediction
error. Higher R2 values can be obtained for calibrations at site that is
more variable than other.

4.2. Variabilities, G × E interactions and broad-sense heritability of wood
chemical properties

In this study, using NIR predictions of a large number of wood
samples from P. nigra clonal trials, we assessed variabilities, G × E
interaction and broad-sense heritability for wood chemical traits. The
range of phenotypic variation in most NIR-predicted wood chemical
traits in the black poplar populations studied was substantial. Guerra
et al. (2013) used Pyrolysis molecular beam mass spectrometry
(pyMBMS) to determine C6 sugars, total lignin content and S/G ratio
in wood samples of 2-yr-old trees, representing 17 open-pollinated
families of P. nigra. Porth et al. (2013) used wet laboratory approaches
to determine xylose, glucose, Klason lignin and acid soluble lignin in
wood samples of 9-yr-old trees, representing natural populations of P.
trichocarpa. The range of variation observed for predicted glucose
content (30.2–49.7%) in the present study is in accordance with that
reported for C6 sugars (27.7–39.7%) by Guerra et al. (2013) and for
glucose (40.7–61.7%) by Porth et al. (2013). We obtained predicted
Klason lignin content (16.1–27.9%) that is well comparable to the
results of total lignin content (Klason and soluble lignin) reported by
Guerra et al. (2013) (19.5–26.5%) and Porth et al. (2013)
(14.7–25.7%). The range of variation of the predicted lignin S/G ratio
(0.69–1.43) described in this study doesn’t mirror the range between
1.3 and 2.1 reported by Guerra et al. (2013) despite almost the same
magnitude of variations, which might arise from the differences in the
standard methods of lignin monomers determination.

The effects of harvest on some of the predicted wood chemical traits
are evident in Fig. S5. This motivated us to ask whether there is a
significant influence of G × E interaction on the wood chemical traits.
Understanding the magnitude and nature of G × E interaction would be
useful for establishing breeding objectives. To estimate the importance
of G × E interaction, we examined variance contributions of G × E
interaction for the wood traits and correlations of same traits between
environments based on genotype means. In this study, significant G × E
interaction was observed across rotations as well as across the two sites
for a majority of the traits assessed, suggesting differential responses of

genotypes to the environmental conditions. The G × E interaction
variance component accounted for a lower proportion of the total
variance across rotations than across sites and this was consistent with
the rank correlations of genotype means between rotations and sites
obtained for most traits examined. Together, it implies that genotype
ranking was relatively more maintained between rotations than be-
tween sites. The observed differences in the magnitude of interactions
between rotations and sites were not surprising, since the clonal trials
were established at two contrasting sites, particularly in terms of soil
fertility. Savigliano is characterized by a higher soil fertility compared
to Orleans (Guet et al., 2015). Given the differences in edaphic factors
between the trial sites, the significant G × E effect revealed for wood
chemical traits across sites could result indirectly from the effects of
edaphic factors on tree growth.

When the contributions of G × E interaction and genotype main
effects to the total phenotypic variances of predicted wood traits were
compared, all the traits had a higher percentage of variance due to
genetic variance component, suggesting less consequences of interac-
tion in poplar tree breeding for improved wood quality. The exceptions
were the glucose and extractives contents across sites, for which the
G × E variance components were larger than the genetic variance
components, which was also consistent with the relatively lower rank
correlations of genotype means between sites for these two traits.
Nevertheless, the partitioning of the G × E sum of squares revealed that
the G × E effect was mainly caused by a few interactive genotypes as
for the other traits. This suggests that the interaction would have less
consequences in the poplar tree breeding programs for biofuel produc-
tion because there exists a high possibility to identify genotypes with
stable wood quality across the two sites. To test this assumption, we
have further computed the relative loss in genetic gain that would arise
when selecting the best 5% genotypes for some relevant traits (S/G, H/
G, glucose, xylose/glucose, C5/C6) on their genotype mean across the 2
sites instead of their genotype mean within each targeted site. We found
that this loss would be fairly low relatively to the maximum expected
gain in the two targeted sites (13.1 and 14.3% on average at Orléans
and Savigliano, respectively).

To date, only a few studies have investigated the effect of G × E
interaction on wood chemical properties, especially in poplars. Kačík
et al. (2012) studied poplar hybrid clones and reported the presence of
significant clone × site interaction for wood chemical traits (lignin
content, cellulose, holocellulose, extractives, S/G ratio). However, the
authors did not provide further information about the implications of
the observed interaction for poplar tree breeding for wood quality.
Similarly, Zhang et al. (2015) found significant clone × site interaction
for lignin content and extractives in triploid hybrid clones of P.
tomentosa. However, clone by site variance exceeded clonal variance
only for holocellulose content, for which the authors did not detect
significant interaction, and not for lignin content or extractives.

Consistent with the observed G × E interaction, extractives content
showed relatively low within-site broad-sense heritability estimates in
this study. Compared to the main wood components, extractives
content may be of less interest as a direct selection trait in poplar
breeding programs for biofuel production. Since chemical analysis was
carried out on non-debarked wood samples in the present study, we
wondered if such particular pattern of variation for extractives content
would be somehow related to variation in bark proportion. To test this
hypothesis, we sought to use the diameter of the samples as a proxy of
bark proportion: samples with relatively large diameter are expected to
have less bark, and consequently, less extractives. Clearly, extractives
content tended to decrease with increasing tree diameter (not shown).
We thus extended our G × E analyses to tree circumference at 1 m
aboveground at harvest in order to check if it could explain the
particular pattern of variation observed for extractives in comparison
with the other wood chemical traits. Interestingly, we found that, albeit
highly significant, the G × E interaction effect accounted for much less
variation than the genotype main effect, resulting in G to G × E
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variances ratio of 3.90 and 1.31, as well as rank correlations between
genotype means of 0.68 and 0.53 across rotations and sites, respectively
(Table S6). This pattern of G × E across rotations and sites was pretty
much consistent with the pattern observed for all wood chemical traits,
but did not explain the exceptionally interactive aspect of extractives.
We thus conclude that, of all the traits evaluated in this study,
extractives content was the most interactive trait with moderate
heritability and we found no evidence for our hypothesis that the
G × E effect on extractives is confounded by G × E effect on tree
circumference. This result is also supported by the fact that we
developed a good global calibration for extractives regardless of the
differences in sample bark content between the two sites.

We also quantified the extent of genetic variation present within the
European populations of black poplar in the clonal trials using the NIR
predictions. Broad-sense heritability was estimated at both individual
tree and clonal mean levels. For clonal selection, clonal mean broad-
sense heritability (clonal repeatability) is more meaningful. Genetic
analysis with NIR predictions revealed that the studied wood chemical
traits were under moderate to high genetic control. However, care must
be taken when interpreting the heritability estimates reported in the
present study because they were estimated from phenotypic data that
had been adjusted for within-site non-genetic random effects like block,
date and spatially dependent residuals. Consequently, they were over-
estimated to an extent that corresponds to an omission of non-genetic
random variances in the denominator of the heritability ratio when
estimated from the first model (using all genotypes within each harvest,
as reported in Table S3). Still, our results suggested that satisfactory
genetic gains could be realized in wood chemical traits through clonal
selection using a fairly low number of replicates (2.7–2.8 per genotype
on average) when NIR analysis is integrated in a breeding program to
evaluate large sets of candidate clones. In this regard, the information
produced in this research could be used for screening individuals with
desirable traits from large-scale clonal trials as future potential parent
trees for hybrid breeding programs aimed at cellulosic ethanol produc-
tion. A general trend was observed for the studied traits in terms of
clonal repeatability. Lignin monomers and lignin composition had the
highest values, followed by lignin contents, cell wall sugars and
extractives (Figs. 1 and 2, Tables S1 and S2). However, the estimated
clonal repeatability differed more between sites than between rotations
for the same traits, which was in agreement with the G × E interaction
results. The higher clonal repeatability estimates obtained for most of
the traits at Savigliano may be explained by the existence of a relatively
favourable growth conditions for poplar trees at this site, which
resulted in both increased expression of genetic variation and reduced
residual variation. Savigliano could be a suitable growth site to apply
the clonal evaluation as it provided the genotypes relatively suitable
conditions for expressing their genetic potential compared to Orleans.

Using direct method of measurements, previous studies in P. nigra
(Guerra et al., 2013) and P. trichocarpa (Guerra et al., 2016; Porth et al.,
2013; Wegrzyn et al., 2010) have also shown that wood chemical
properties are under moderate to high genetic control. For example,
Guerra et al. (2013) studied 17 cloned open-pollinated families of P.
nigra and reported individual broad-sense heritability H( )i

2 values of
0.46, 0.58 and 0.70 for C6 sugars, lignin and S/G, respectively. In the
current report, the estimated Hi

2 values of 0.47 ± 0.05-0.55 ± 0.04,
0.52 ± 0.07-0.59 ± 0.06 and 0.55 ± 0.04–75 ± 0.03 for glucose,
Klason lignin and S/G, respectively, compares favourably well with Hi

2

values reported by these previous authors (Figs. 1 and 2, Tables S1 and
S2). More recently, Guerra et al. (2016) studied P. trichocarpa clones
sampled in provenances and reported the clonal repeatability H( )c

2

estimates of 0.22, 0.33 and 0.81 for C6 sugars, lignin and S/G,
respectively, with an average number of 3 biological replicates per
clone. In comparison with the results of S/G reported by these authors,
we found similar Hc

2 values for S/G (0.77 ± 0.03–0.89 ± 0.01)
(Figs. 1 and 2, Table S1 and S2). Porth et al. (2013) studied the
narrow-sense heritability of several wood properties in natural popula-

tions of P. trichocarpa using molecular markers to measure relatedness
and reported values of 0.46, 0.66, 0.97 for glucose, Klason lignin and
soluble lignin, respectively. We found higher clonal repeatability for
glucose (0.70 ± 0.04-0.77 ± 0.03) and Klason lignin
(0.75 ± 0.05–0.80 ± 0.04), but a lower value for acid-soluble lignin
(0.83 ± 0.02), indicating that acid-soluble lignin may be under
relatively lower genetic control in P. nigra than P. trichocarpa (Figs. 1
and 2, Table S1 and 2).

4.3. Adapting the NIR method to clonal trials

An initial step to harness the standing genetic variation in poplar is
to evaluate natural populations in multi-site clonal trials. This allows to
study the relative importance of genetic, environment and G × E
interaction on important biomass production and biomass composition
related traits. In parallel, screening good candidates from clonal trials
as future parents would increase the genetic diversity available for
breeding poplar trees for cellulosic ethanol production. The goal of
bioenergy poplar breeding program is to simultaneously improve
biomass production and biomass composition. To incorporate wood
quality traits into breeding programs, however, tree breeders need low-
cost and high-throughput techniques for determination of biomass
composition. Standard methods for analysis of biomass composition
such as wet chemistry are useful for evaluating small sample sets, but
they have limitations to be used in tree breeding programs, where
screening of a large number of samples is mandatory to identify those
possessing desirable traits. Standard methods are laborious, costly and
time consuming. An alternative way is to use NIR spectroscopy coupled
with multivariate statistical approaches. NIR spectroscopy is a high-
throughput technique for screening a large population. It is easy to
operate, allows non-destructive analysis, needs little sample prepara-
tion, provides reliable information, requires less time and minimal cost
for assessing large number of samples and captures multiple features of
the samples with one operation (Lupoi et al., 2014).

The moderate to high heritability estimates and the detection of
G × E interaction in this study are encouraging for NIR determination
of wood chemical traits and for use in poplar breeding programs for
cellulosic ethanol production. Integration of NIR analysis in multi-site
clonal trials would allow simultaneous multi-trait evaluation and give
access to identify potential trade-offs between biomass production and
biomass composition, which in turn, supports poplar breeding pro-
grams to better monitor multi-trait selection and exploit the large
variation present in natural gene pools. As a first check at the genotypic
level, we have computed the correlations within each harvest between
growth and wood properties and haven’t found any adverse correlation
within our dataset (Fig. S6). These results are encouraging towards the
development of performing clones dedicated to biomass and biofuel
production.

Despite its importance, optimal procedures for developing NIR
calibrations for rapid prediction of wood composition in multi-site
poplar clonal trials are not well established. In the present study, we
developed NIR calibration models and successfully applied this indirect
method to analyze the sources and extent of variability for wood
chemical traits in large-scale clonal trials of P. nigra, which is the first
work, as far as we know. Finally, future work on development of new
calibration models would be useful to further establish the NIR
calibration protocols for clonal trials. Some of the important points to
consider will be the number of technical replicates for the reference
samples to reduce the uncertainties associated with the standard
methods and the number of biological replicates per genotype to reach
enough accuracy on a clonal basis.

5. Conclusions

From our study of wood chemical traits in clonal trials of European
black poplar at two contrasting sites, three important conclusions can
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be drawn. (1) We successfully developed global and site specific NIR
calibration models for predicting wood chemical traits in natural
populations of European black poplar with reasonable accuracy. (2)
We demonstrated the high throughput nature of the NIR method, by
applying the calibrations to predict the wood chemical composition of
the 5799 trees and by the analyses of these NIR predictions to estimate
trait variance components and broad-sense heritabilities. (3) We further
used the NIR predictions to test and evaluate the extent of G × E
interaction across coppice rotations within a single site as well as across
sites.

In this study, the moderate to high heritability estimates and the
detection of G × E interaction suggests that the NIR-based technique
can efficiently be used for dissecting the genetic basis of wood chemical
properties in a multi-environment large-scale poplar clonal trials and
for screening elite individuals from such trials as future parents for
interspecific hybridization. Integration of such indirect method in
poplar tree breeding programs would allow the exploitation of standing
genetic variation in poplars for developing poplar genotypes that
combine high biomass yield with superior wood quality for cellulosic
ethanol production. Furthermore, the observed moderate to strong
genetic control over the NIR-predicted wood chemical traits should
pave the way for more detailed dissection of the genetic and molecular
basis of the NIR-predicted wood compositional variation through
molecular marker analysis of the NIR predictions. In particular, it
would be useful to extend such analysis to association mapping aimed
at identifying individual loci controlling the predicted phenotypic
variation in the studied population of P. nigra.
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